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Key Functions:          Absolute Value



	
[image: ]

*Label three ordered pairs on the function’s graph on both sides of the vertex.  (integer coordinates only)









*Use interval notation to list the following:


Domain:

Range:










I.	Sketch each function on the given grid.  List the coordinates for the vertex.


a)	

[image: ]

b)	
[image: ]

c)	
[image: ]


d)	
             [image: ]

II.	Evaluate and simplify each expression.


a)	




b)	



c)	Determine if the following statement is true or false.  Show your work.


  = ?











III.	Solve each equation for all values of ‘x’ given that .


a)	







b)	                                                             







c)	


	



IV.	Write the function for each graph.

a)	
[image: ]
b)	
[image: ] 
c)

[image: ]



Key Functions:        	Quadratic



	

[image: ]

*Label seven ordered pairs on the function’s graph.  (integer coordinates only)













*Use interval notation to list the following:


Domain:

Range:


					

	

    
I.	Sketch each parabola on the provide grids.  List the coordinates of the vertex for each.


a)	
[image: ]

b)	
[image: ]

c)	

[image: ]

d)	                           [image: ]  


II.	Evaluate and simplify each expression given 


a)	



b)	



c)	





d)	








III.	Solve each equation for all values of ‘x’ given that  .
 

a)	








b)	





	






IV.	Write the function for each graph.

a)	

[image: ]

b)	

[image: ]


c)	

[image: ]




Key Functions:        	Cubic



	

[image: ]

*Label five ordered pairs on the function’s graph.  (integer coordinates only)









*Use interval notation to list the function’s:


Domain:

Range:










I.	Sketch each function on the given grid.  List the coordinates of the critical point.


a)	
[image: ]

b)	

[image: ]

c)	

[image: ]

d)	
[image: ]


II.	Evaluate and simplify each expression given that .


a)	



b)	



c)	





d)	









III.	Solve each equation for all values of ‘x’ given that . 


a)	







b)	




	






IV.	Write the function for each graph.

a)	
[image: ]


b)	

[image: ]

c)	

[image: ]

Key Functions:        	Rational


	

[image: ]

*Label six ordered pairs on the function’s graph.  
(3 in each quadrant.)








Label the Asymptotes on the function’s graph.





*Use interval notation to list the following:


Domain:

Range:






I.	Sketch the graph on the given grid.  Sketch the asymptotes with dotted lines and label them.

a)	
[image: ]

b)	
[image: ]

c)	
[image: ]

d)		[image: ]


II.	Evaluate and simplify each expression given that .


a)	




b)	




c)	














III.	Solve each equation for all values of ‘x’ given that .


a)	







b)	




	



IV.	Write the function for each graph.
Draw and label the asymptotes.

a)	
[image: ]

b)	

[image: ]

c)	

[image: ]

Key Functions:        	Square Root



	

[image: ]

*Label four ordered pairs on the function’s graph.  (integer coordinates only)










*Use interval notation to list the following:


Domain:

Range:










I.	Sketch each function on the given grid.  

a)	

[image: ]

b)	

[image: ]

c)	

[image: ]

d)	

[image: ]


II.	Evaluate and simplify each expression given that  .


a)	




b)	




c)	












III.	Solve each equation for all values of ‘x’ given that  .


a)	








b)	







c)	



IV.	Write the function for each graph.
a)	
[image: ]

b)	

[image: ]

c)	

[image: ]



Circles									_______________________


Circle:	the set of points in a plane that are equidistant from a given point.


								[image: ]


List the center and radius of each circle.


1.					center _________		Radius:  r = _______


2.					center _________		Radius:  r = _______


3.			center _________		Radius:  r = _______


4.				center _________		Radius:  r = _______


5.				center _________		Radius:  r = _______


6. 				center _________		Radius:  r = _______


7. 		center _________		Radius:  r = _______




8.			center _________		Radius:  r = _______
Graph each circle.




9.							10.  	  

[image: graph_paper_1up]	              [image: graph_paper_1up]








11.					12.	


[image: graph_paper_1up]		[image: graph_paper_1up]









		Appendices A, B and C Class practice		Name :_________________________
									Date :___________________

1.	Equations and Inequalities

	Solve.  Write your final answer using set notation or interval notation.


	(a)  				(b)  












	(c)  		







2.	Functions

(a)  A relation is a set of ordered pairs.
(b)  A FUNCTION is a relation where ____________________________________________________.
(c)  Domain of a function is _____________________. (d)  Range of a function is_________________.
(e)  8 key functions studied in Intermediate Algebra:

	Function Name
	General Equation
	Sketch of graph
	Domain and Range

	Linear
	
	
	

	Quadratic
	
	
	

	Absolute Value
	
	
	

	Cubic
	
	
	

	Radical
	
	
	

	Rational
	
	
	

	Exponential
	
	
	

	Logarithm
	
	
	



3.	List the Domain of each function. (Use interval notation.)




	(a)  			(b)  			(c)  			

4.	Circle all functions with a Range of all Real Numbers.







								

5.	List the Domain and Range for each graph.  (Use interval notation.)
	[image: ]	[image: ]	

	D: _________________	R: ____________	 D: ______________  R:______________						
Problems 6 - 7:	Use the list of functions to respond to each question.



								
6.	Evaluate each of the following.  Simplify if possible.


	(a)  					(b)  															  
						




	(c) 				(d)    







7.	Solve     for all values of x.



Chapter 1:  Trigonometric Functions
Trigonometry: The study of triangles.
Sec 1.1: Angles
Definitions
A line is an infinite set of points where between any two points, there is another point on the line that lies between them.	Line AB,  


A line segment is part of a line that consists of two distinct points on the line and all the points between them.	Line segment AB or segment AB, 


A ray AB, denoted .  The endpoint of the ray AB is A.  The endpoint of the ray BA is B.



An angle is a plane figure formed by two rays that share a common point (vertex).

Initial and terminal sidesterminal side
initial side


	vertex

Degree is a unit for measuring angles and arcs that corresponds to  of a complete revolution.

· Counterclockwise rotation results in (+) measure


· Clockwise rotation results (-) measure


	Types of Angles
	Measurement

	Acute angle
	

	Right angle
	

	Obtuse angle
	

	Straight angle
	




Note:  Angles are often denoted by the greek letter (theta).  Other greek letters to represent angles are etc…..

Defns
Complementary angles are angles whose sum measures that add up to   (they’re complements of each other)
Supplementary angles are angles whose sum measures that add up to   (they’re supplements of each other)


Ex 1
Find the measure of the marked angles.
[image: ]
a = (4x + 12)°, b = (2x + 66)°
Ex 2	Find the measure of the smaller angle formed by the hands of a clock at the given time.
a) 
						b) 
											







What do we do when we have an angle that is less than 1 degree?
· Use FRACTIONS of DEGREES with minutes and seconds.

Portions of a degree are measured with minutes and seconds

Defns
One minute, written , is  of a degree.  
One second, written  is  of a minute.  








Note:  Fractions of degrees are used in distance between two cities measured by latitude and longitude.  Also, a space shuttle traveling thousands of miles will be far off its target if its heading is off by minutes or even seconds of a degree.

Ex 3  (#48)	Perform the calculation.		


(a)    + 					 (b)  				
           ______________





Ex 4  (#60)	Convert the angle measure to degrees.  If applicable, round to the nearest thousandth of a degree.	









Ex 5  (#72)	Convert the angle measure to degrees, minutes, and seconds.  Round answer to the nearest second, if applicable.	







Defns	
An angle is in standard position if its vertex is at the origin and its initial side is on the -axis.





Angles in standard position whose terminal sides lie on the - or -axis, such as angles with , and so on, are called quadrantal angles.

Angles with the same initial and terminal sides, but different amounts of rotation are called coterminal angles.  Their measures differ by a multiple of .














Ex 6  (#100)	Give an expression that generates all angles coterminal with the angle .  Let  
represent any integer.




Ex 7
Find the angle with least positive measure coterminal with each of the following angles.
(a)    					(b) .





Ex 8  (#124)	Locate the point  and draw a ray from the origin to the point.  Indicate with an arrow the angle in standard position having least positive measure.  Then find the distance  from the origin to the point, using the distance formula.

[image: graph_paper_1up]
Ex 9  (#134)	An airplane propeller rotates 1000 times per min.  Find the number of degrees that a point on the edge of the propeller will rotate in 1 sec.





Try Problems:


















































Sec 1.2: Angle Relationships and Similar Triangles
Sketch an angle.  How to name it?



Review 
· Vertical angles (have same measure)

3
4
2
1
7
8
6
5


· Parallel lines

· Transversal

· Alternate interior angles  (equal) 

· Alternate exterior angles (equal)

· Interior angles on the same side of transversal (suppl.)

· Corresponding angles (equal)

Fact
The sum of the measure of the angles of any triangle is 





Review 
	Types of Triangles
	Characteristics

	Acute Triangle
	

	Right Triangle
	

	Obtuse Triangle
	

	Equilateral Triangle
	

	Isosceles Triangle
	

	Scalene Triangle
	


Conditions for Similar Triangles
For any triangle  to be similar to triangle , the following conditions must hold.
1. Corresponding angles must have the same measure.
2. Corresponding sides must be proportional.  (That is, the ratios of their corresponding sides must be equal.)







Ex 1 	Find the measures of angles 1, 2, 3, and 4 in the figure, given that the lines  and  are parallel.



1
2
3
4













Ex 2  Find the measure of the marked angles.
[image: ]
a = (11x + 12)°, b = (4x + 123)°






Ex 3  Find side x with the given information.

[image: ]
a = 13
b = 12
c = 5
d = 26
e = 24









Ex 4	A tree casts a shadow 42 m long. At the same time, the shadow cast by a 30-centimeter-tall statue is 66 cm long. Find the height of the tree.  Include a sketch.



















Sec 3.1 (part I): Radian Measure
So far, we have seen angles measured in degrees.  Another unit of measurement for angles is radians.
Radian measure is a common unit of measure.  In more theoretical work in math, radian measure is preferred as it allows us to treat the domain of trig functions as real numbers, rather than angles.  It also simplifies theorems such as the derivative of the sine function.  If you plan on moving on to Calculus, you must be able to work in radians.  It was wide applications in engineering and science.
Defn
An angle with its vertex at the center of a circle that intercepts an arc on the circle equal in length to the 
radius of the circle has a measure of 1 radian.  radian  think radius

	















Ex1 	Draw figures to represent  radian,   radians and  radians.







Ex 2	What quadrant is  in?






Converting Between Degrees and Radians

1. 	Multiply by 
2. 	Multiply by 

Note
If no unit measure is specified, then the angle is understood to be measured in radians.








Ex 3	Convert each to degree or radian measure.
a)				b)				c)				d)








Common Measures in Radians and Degrees
Must know these equivalencesFigure 4 on page 97


	Degrees
	Radians (exact)
	Radians (approx.)

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


[image: fig03-01-03]

















Try problems:	Convert each to degree or radian measure.

1) 					2)  6			





3) 						4) 



Study these common angles before filling out the following chart without looking.  Don’t peek!
	Degrees
	Radians (exact)

	
	

	
	

	
	

	
	

	
	

	
	

	
	





















 Warm Up			Name:____________________________Date :______________

Show complete solutions and circle all final answers.  

1.  Find the complement to an angle measuring  .










2.  Find the angle of least positive measure that is coterminal with     	






3. Locate the point  on a rectangular coordinate system.


[image: graph_paper_1up]
a)  Draw a ray from the origin through the given point.  


b)  Indicate with an arrow the least positive angle in standard position.


c)  Find the distance r from the origin to the point.









4.  Find the measure of each angle. (see diagram)

[image: ]












5.  The triangles are similar.  Find ∠B.  Note that  and .
[image: ]









6.  Joey wants to know the height of a tree in a park near his home.  The tree casts a 38-ft shadow at the same time that Joey, who is 63 inches tall, cast a 42-in shadow.  Find the height of the tree.












Sec 1.3:  Trigonometric Functions
We will define the six trig functions: sine, cosine, tangent, cosecant, secant, and cotangent.  

Let  define an angle in standard position.  Choose any point  on the terminal side of .















We define as follows:

Six Trig Functions




Where 

SOH-CAH-TOA












Ex 1	The terminal side of an angle  in standard position passes through the point .  Find the values of the six trig functions of angle .















Ex 2	Find the six trig function values of the angle  in standard position, if the terminal side of  is defined by .
[image: graph_paper_1up]
Ex 3	Graph .  Use the graph to determine what tangent really means.
[image: graph_paper_1up]
Quadrantal Angles
Formed when terminal side of an angle in standard position lies along one of the axes.  Occurs when











Trig Function Values at Quadrantal Angles

	 in degrees
	 in radians
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	



Ex 4  If  is in quadrant III, what are the signs of the following?



(a)  				(b)  				(a)  



Ex 5  Find each of the following:



(a)  		(b)  		(c)  





Ex 6  	Evaluate.  

(a)  			(b)   




(c)





Note: (Pyth Id)



TRY  	Evaluate.  


(a)  			(b)  	







TRY	Decide whether each expressions is equal to 0, 1, or -1 or is undefined.
(#94)			(#96)				(#100) 			(#102) 

 



























































Sec 1.4: Using the Definitions of the Trig Functions
Note that 

Reciprocal Identities












Ex 1	Find each function value.
a)					b)					c)  (#10)









Signs of Function Values
[image: 01-03-06]





ALL STUDENTS TAKE CALCULUS


Ex 2	Determine the signs of the trig functions of an angle in standard position with the given measure.
a)			b)			c)			d)	





Ex 3	Identify the quadrant (or possible quadrants) of an angle  that satisfies the given conditions.
a)						b)						c)  (#36)
	






Find the Ranges of Trig Functions



















































Ranges of Trig Functions
[image: untable01-04-slide12]

















Ex 4	Decide whether each statement is possible.
a)				b)				c)				d)	



Ex 5	Suppose that  is in QIII and .  Find the values of the other 5 trig functions.











Pythagorean Identities
For all angles   for which the function values are defined, the following identities hold.








Derive Pythagorean Identities















Quotient Identities
For all angles  for which the denominators are not zero, the following identities hold.








Derive Quotient Identities










Ex 6	Find  and , given that  and .  Check your answer.  Use identity.









Ex 7	Find  and  , given that  and  is in QII.












Ex 8  (#74)	Find the remaining 5 trig function values if  and  is in QII.









Sec 2.1: Trigonometric Functions of Acute Angles

Another way to define trigonometric functions based on the ratios of the lengths of the sides of a right triangle.
Right-Triangle-Based Definitions of Trig Functions







SOH-CAH-TOA
























Ex 1	Find the sine, cosine, and tangent values for angles A and B in the figure.  









Note that  and .  Always true for acute angles in a right triangle.

Since angles  and  are complementary and , sine and cosine are cofunctions.  

Cofunction Identities
For any acute angle , cofunction values of complementary angles are equal.









Ex 2	Write each function in terms of its cofunction.
a)					b) 				c)	



Ex 3	Find one solution for each equation.  Assume all angles involved are acute angles.  
a)	 				b)	







Ex 4	Determine whether each statement is true or false.

a)					b) 	





Special Angles























STUDY TRIG VALUES WELL!  CH 6 (INVERSE STUFF) WILL BE IMPOSSIBLE TO DO WITHOUT BEING PROFICIENT WITH IT.  NEEDS TO BE NEARLY SECOND NATURE!!

Degrees
Radians
































































Function Values of Special Angles















Ex 5 	Find the six trig function values for a  angle.








Ex 6	Evaluate.  (Note: These problems are in degrees but almost everything in calculus is done in radians.)
a)			b)			c)			d)			e)
								















f)			g)			h)			i)			j)
								












































































Sec 2.2: Trigonometric Functions of Non-Acute Angles
Defn	A reference angle for an angle , written , is the positive, acute angle made by the terminal side of angle  and the -axis.  















Ex 1	Find the reference angle for each angle.
a) 					b) 					c) 






Ex 2	Find the exact values of the 6 trig functions for .






Sec. 3.1 (part II)  
Ex 3	Evaluate.
a)  				b)  				c) 				









Ex 4	Evaluate .







Ex 5	Evaluate each function by first expressing the function in terms of an angle between  and .
a)  					b)  













Ex 6	Find all values of , if  is in the interval  and .  









TRY	Find the exact values of the 6 trig functions for each angle.  Always start with a sketch!


(a)  				
	

	
	
	

	

	
	
	

	

	
	
	

	

	
	
	

	

	
	
	

	

	
	
	





(a)  	
	

	
	
	

	

	
	
	

	

	
	
	

	

	
	
	

	

	
	
	

	

	
	
	



Sec 3.2:  Applications of Radian Measure

From geometry, we know the arc lengths are proportional to the measure of their central angles.










Arc Length
The length  of the arc intercepted on a circle of radius  by a central angle of measure  radians is given by the product of the radius and the radian measure of the angle, or 








	NOTE:	In degrees, the arc length formula is .



Ex 1	A circle has radius 25.60 cm.  Find the length of the arc intercepted by a central angle having each of the following measures.
a)						b)  









Ex 2	Eerie, Pennsylvania is approximately due north of Columbia, South Carolina.  The latitude of Eerie is , while that of Columbia is .  Find the north-south distance between the two cities.  (The radius of Earth is 6400 km.)

*Lattitude gives the measure of a central angle with vertex at Earth’s center, whose initial side goes through the equator and whose terminal side goes through the given location.










Ex3	A rope is being wound around a drum with radius 0.327 m.  How much rope will be wound around the drum if the drum is rotated through an angle of ?










Ex 4	Two gears are adjusted so that the smaller gear drives the larger one, as shown in the figure.  If the smaller gear rotates through angle of, through how many degrees will the larger gear rotate?
3.6 in
5.4 in












Area of a Sector
The area  of a sector of a circle of radius  and central angle  is given by the following formula.









Proof of Area of a sector:










Ex 5	Find the area of a sector of a circle having radius 15.20 ft and central angle .







Sec 3.3: The Unit Circle and Circular Functions
In section 1.3, we defined the 6 trig functions where the domain was a set of angles in standard position.  In advanced math courses, it is necessary that the domain consist of real numbers.


























Circular Functions
For any real number  represented by a directed arc on the unit circle, 











The unit circle is symmetric with respect to the -axis, -axis, and origin.  We can use symmetry and trig function values in the first quadrant to evaluate trig functions in the other 3 quadrants.


Domain of Circular Functions
Sine and Cosine: 

Tangent and Secant:	

Cotangent and Cosecant:	












Ex 1	Evaluate.
a)				b)				c)				d)	 













e)				f)				g)  				h)













Note:	For calculator problems, be sure the setting is in radian mode.

Ex 2	
a)	Find the approximate value of  if .






b)	Find the exact value of  if .










Sec 3.4: Linear and Angular Speed
Suppose a point is moving along in a circular path.  It has both linear speed and angular speed.

















Defns	Let  be a point on a circle of radius  moving at a constant speed.  The measure of how fast  is changing is the linear speed, .



Let  be the angle formed by an angle in standard position whose terminal side contains .  The measure of how fast  changes is its angular speed.  Angular speed, denoted , is given as

Note:  

















Ex 1	Suppose that  is on a circle with radius 15 in. and ray  is rotating with angular speed  radians per second.
a)	Find the angle generated by  in 10 sec.




b)	Find the distance traveled by  along the circle in 10 sec.




c)	Find the linear speed of  in inches per second.




Ex 2	A belt runs a pulley of radius 5 in. at 120 revolutions per minute.  
a)	Find the angular speed of the pulley in radians per second.






b)	Find the linear speed of the belt in inches per second.








Ex 3	A satellite traveling in a circular orbit approximately 1800 km above the surface of Earth takes 2.5 hrs to make an orbit.  (The Earth’s radius is 6400 km.)

a)	Approximate the linear speed of the satellite in kilometers per hour.  A sketch will help!
















b)	Approximate the distance the satellite travels in 3.5 hrs.














Sec 2.4: Solving Right Triangles
Most values obtained for trig applications are not exact.  We will round our final answers using significant digits.  That is, we round the final answer to the same number of significant digits as the number with the least number of significant digits.
In the following numbers, the sig figs are identified in color/bold.


Ex 1  (#12)	Solve the right triangle.  That is, find the measures of all angles and sides of the triangle.  Provide angles answers in degrees and minutes.  (Round using sig figs.)























Angles of Elevation or Depression
In applications of right triangles, the angle of elevation from point  to  (above ) is the acute angle formed by  and a horizontal ray with endpoint .  The angle of depression from point  to  (below ) is the acute angle formed by  and a horizontal ray with endpoint .

Both angles are measured between the line of sight and a horizontal line (‘-axis’).
Angle of Depression
Horizontal


Angle of Elevation
Horizontal









Ex 2  (#56)	The length of the shadow of a flagpole 55.20 ft tall is 27.65 ft.  Find the angle of elevation of the sun to the nearest hundredth of a degree.































































Section 2.4
							Name: _________________________________
									Date :_____________________

Practice Word Problems on Right Triangles

Solve the following problems.  You need to attach a sketch for each problem and label clearly.

1)  A guy wire is attached to a 100-ft tower that is perpendicular to the ground.  The wire makes an angle of 55 with the ground.  What is the length of the wire?













2) A fire is sighted from a fire tower in Wayne National Forest.  The ranger found that the angle of depression to the fire is 22.  If the tower is 75 meters tall, how far is the fire from the base of the tower?












3) A surveyor is 100 meters from a building.  He finds that the angle of elevation to the top of the building is 23.  If the surveyor’s eye level is 1.55 meters above the ground, find the height of the building.










4) From the top of the lighthouse, the angle of depression to a buoy is 25.  If the top of the lighthouse is 150 feet above sea level, find the distance from the buoy to the foot of the lighthouse.























5)  A ship travels 50 km on a bearing of 27, the travels on a bearing of 117 for 140 km.  Find the distance traveled from the starting point to the ending point.

























Sec 2.5: Further Applications of Right Triangles
For full credit on quizzes/exams an accurate, correctly labeled sketch must be drawn.  Use your sketch to check reasonability of your answer.

Bearing is an important concept used in navigation and is measured in a clockwise direction from due north.

Sample (true) bearings:		










We may also express bearings by using a north-south line and using an acute angle to show the direction, either east or west, from the line.

Sample (conventional) bearings:		













Ex 1  (#12)	An observer of a radar station is located at the origin.  Find the bearing of an airplane located at .  Express the bearing using both methods.














Ex 2  (#18)	Two ships leave a port at the same time.  The first ship sails on a bearing of  at 17 knots and the second on a bearing of  at 22 knots.  How far apart are they after 2.5 hr?




















Ex 3  (#34)	Debbie Glockner-Ferrari, a whale researcher, is watching a whale approach directly toward a lighthouse.  When she first begins watching the whale, the angle of depression to the whale is .  Just as the whale turns away from the lighthouse, the angle of depression is .  If the height of the lighthouse is 68.7 m, find the distance traveled by the whale as it approached the lighthouse.

























Sec 7.1: Oblique Triangles and the Law of Sines

In section 2.4, we solved right triangles.  We now extend the concept to all triangles.

Congruence Axioms
Side-Angle-Side
SAS
If two sides and the included angle of one triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent.
Angle-Side-Angle
ASA
If two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent.
Side-Side-Side
SSS
If three sides of one triangle are equal, respectively, to three sides of a second triangle, then the triangles are congruent.














Whenever SAS, ASA, or SSS is given, the triangle is unique.

An oblique triangle is a triangle that is not a right triangle.  Information sufficient to solve an oblique triangle:	(1)  one side	(2)  any other two measures



Data Required for Solving Oblique Triangles
One Side
Two Angles
SAA or ASA

Case 1

Two Sides
One Angle not included between the two sides
This may lead to more than one triangle
SSA

Case 2

Two Sides
One Angle included between the two sides
SAS

Case 3

Three Sides
SSS

Case 4

Use Law of Sines
Sec 7.1 & 7.2
Use Law Cosines
Sec 7.3























Derive the Law of Sines
















Law of Sines
In any triangle , with sides , , and , 


Note:	The ratio above is the diameter of the circumscribed circle of the triangle.  See Exercise 53.

Alternative form:













We can use the same method used to derive the Law of Sines to derive formulas for the area of a rectangle (with an unknown height).





Area of a Triangle (SAS)
In any triangle , the area  is given by the following formulas.







[image: ]
Ex 1  (#4)	Find the length of side .










Ex 2  (#12)	Solve the triangle.






















[image: ]Ex 3  (#26)	To determine the distance  across a deep canyon, Rhonda lays off a distance .  She then finds that  and .  Find .






  


















Ex 4  (#30)	Standing on one bank of a river flowing north, Mark notices a tree on the opposite bank at a bearing of .  Lisa is on the same bank as Mark, but 428.3 m away.  She notices that the bearing of the tree is .  The two banks are parallel.  What is the distance across the river?

























Ex 5.  The angle of depression from the top of a building to a point on the ground is .  How far is the point on the ground from the top of the building if the building is 252 m high?





















Ex 6  Two docks are located on an east-west ling 2,587 feet apart.  From dock A, the bearing of a coral reef is   .  From dock B, the bearing of the coral reef is   .  Find the distance from dock A to the coral reef.	






















[image: ]Ex 7  (#34)	Three atoms with atomic radii of 2.0, 3.0, and 4.5 are arranged as in the figure.  Find the distance between the centers of atoms  and .























[image: ]Ex 8  (#40)	Find the area of the triangle using the formula , and then verify that the formula  gives the same result.





















[image: ]Ex 9  (#55)	Several of the exercises on right triangle applications involve a figure similar to the one shown 
Use the law of sines to obtain  in terms of  and .

























Sec 7.3: The Law of Cosines
Triangle Side Length Restriction
In any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining side.  (Sum of two shortest sides must be greater than the longest side.)






Ex 1	A triangle has base of length 13 and the other two sides are equal in length.  If the lengths are integers, what is the shortest possible length of the unknown side? 




Derive the Law of Cosines	(using the distance formula)








































Law of Cosines
In any triangle  with sides  and , the following hold.










See “Suggested Procedure for Solving Oblique Triangles” on page 310.

Ex 2	Determine whether SAA, ASA, SSA, SAS, or SSS is given.  What law would you use?
#1			#2			#3			#4



#5			#6			#7			#8




Ex 3  (#12)	Find the measure of .  (No calculator.)














Ex 4	Solve each triangle.






(#16)								(#34)
								
								
								

















Ex 5  (#40)	Points  and  are on opposite sides of a ravine.  From a point third point , the angle between the lines of sight to  and  is .  If  is 153 m long and  is 103 m long, find .











Ex 6  (#44)	An airplane flies 180 mi from point  at a bearing of , and then turns and flies at a bearing of  for 100 mi.  How far is the plane from point .

















[image: ]Ex 7  (#51)	A weight is supported by cables attached to both ends of a balance beam, as shown in the figure.  What angles are formed between the beams and cables?

















[image: ]Ex 8  (#57)	Surveyors are often confronted with obstacles, such as trees, when measuring the boundary of a lot.  One technique used to obtain an accurate measurement is the so-called triangulation method.  In this technique, a triangle is constructed around the obstacle and one angle and two sides of the triangle are measured.  Use this technique to find the length of the property line (the straight line between the two markers) in the figure.


















Heron’s Formula (SSS)
If a triangle has side lengths  and  with semiperimeter 

then the area  of the triangle is given by the formula:















Ex 9  (#66)	Find the area of the triangle .  
















Sec 7.2: The Ambiguous Case of the Law of Sines
Recap:  To solve a triangle, we need to to find ____________________________________________.

To solve a triangle, we need to be given AT LEAST _________________________________________.

Six possible cases of 3 given measurements:

I. Angle-Angle-Angle





II. One side and any two angles










III. Two sides and an included angle










IV. Side-Side-Side







V. Two sides and a non-included angle








Why is SSA ambiguous?


Let  and  be fixed and assume  is acute.  


















































Ex 1  (#8)	Determine the number of triangles possible with the given parts.













Ex 2	Find the unknown angles in triangle ABC for each triangle that exists.
(#18)							 















Ex 3	Solve the triangle that exists.
(#22)  




















Ex 4(#30)    




















Ex 5  (#36)	[image: ]The angle of elevation from the top of a building 45.0 ft high to the top of a nearby antenna tower is .  From the base of the building, the angle of elevation of the tower is .  Find the height of the tower.


























Ex 6  (#38)  A pilot flies her plane on a heading of  from point  to point  which is 400 mi from .  Then she turns and flies on a heading of  to point , which is 400 mi from her starting point .  What is the heading of  from , and what is the distance ?























Ex 7  (#40)   Use the law of sines to prove the statement is true for any triangle , with corresponding sides  and .























Summary of Solving a Triangle

	
Oblique Triangle
	
What do I do?

	
	

	
	

	
	

	
	



Sec 4.1: Graphs of the Sine and Cosine Functions

Graph of 
[image: ]

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	



[image: ]Ex 1	Graph each function.















[image: ]















Defn
A periodic function is a function  such that  for every real number  in the domain of , every integer , and some positive real number .  The least positive value of  is the period of the function.
Periodic functions “repeat” with a regular pattern. 






Properties of the Sine Function
1)  
2)  
3)  The sine function is an ______ function, as the symmetry of the graph with respect to the origin indicates.  Moreover, ________ .
4)  The sine function is periodic, with period ______.
5)  The -intercepts occur at 
6)  The -intercept is .
7)  The maximum value is 1 and occurs at 
8)  The minimum value is -1 and occurs at 


















[image: ]Ex 2	Graph each function.















[image: ]













Properties of the Cosine Function
1)  
2)  
3)  The cosine function is an ______ function, as the symmetry of the graph with respect to the -axis indicates.  Moreover, ________ .
4)  The cosine function is periodic, with period ______.
5)  The -intercepts occur at 
6)  The -intercept is .
7)  The maximum value is 1 and occurs at 
8)  The minimum value is -1 and occurs at 

















Defn
The amplitude of a periodic function is half the difference between the maximum and minimum values.  The graph of  or , with , will have the same shape as the graph of  or , respectively, except with range .  The amplitude is ______.






Calculate the amplitude of  and .  Provide a sketch of each graph.





[image: ]Ex 3	Make a conjecture about the graphs of  and .

Conjecture:





Note:	Because of this relationship, the graphs of  or  are referred to as sinusoidal graphs.

Ex 4	Find the period of  and .













Period
For , the graph of  will resemble that of , but with period .  Similarly for  and .








Ex 5	Graph each function over a two-period interval.  Give the period and amplitude.

(#38’)  							


[image: ][image: ]









































Ex 6	Write the function that describes each graph.  Assume no phase (horizontal) shift.
[image: ]
[image: ]

(a)	        (b)




  


[image: ]

[image: ](c)
		(d)









[image: ]
(e)


[image: ]
	(f)







[image: ]
[image: ](g)




















































Sec 4.2:  Translations of the Graphs of the Sine and Cosine Functions

Recall From Algebra:



										








Defn
With circular functions, a horizontal translation is called a phase shift.  In the function , the input value is called the argument.






Combinations of Translations





Ex 1  Find the amplitude, the period, any vertical translation, and any phase shift of the graph of each function.  
(a) 

  					(b)  
[image: ][image: ]















	




(#26)								(#30)


[image: ]
[image: ]






























































[image: ][image: ](#48)								(#52)


















































Ex 2	Match the function with its graph.



[image: ][image: ]
(a)		(b)

		




_________________________					____________________



[image: ][image: ](c)		(d)








_________________________					____________________


[image: ]

[image: ](e)		(f)





_________________________					____________________


[image: ]

[image: ](g)		(h)







_________________________					____________________

Sec 4.3: Graphs of the Tangent and Cotangent Functions
Because the tangent function has period , we only need to determine the graph over some interval of length .  (The rest of the graph will consist of repetitions over some interval of length .)  Because the tangent function is not defined at , we will concentrate on the interval .
[image: ]
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	




What happens when -values approach ?

That is, what is 

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	Undefined



The tangent function has a vertical asymptote everywhere it’s undefined, that is, when .  On , it has a vertical asymptote at _____________________________.
Properties of the Tangent Function
1)  
2)  
3)  The tangent function is an ______ function, as the symmetry of the graph with respect to the origin indicates.  Moreover, ________ .
4)  The tangent function is periodic, with period ______.
5)  The -intercepts occur at 
6)  The -intercept is .
7)  Vertical asymptotes occur at 

















Ex 1	Graph each.

[image: ][image: ]



















We define the cotangent function as we did the tangent function.  The period of  is also  and because cotangent is not defined for integer multiples of , we will concentrate on the interval .  
[image: ]
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	






The cotangent function has a vertical asymptote everywhere it’s undefined, that is, when .  On , it has a vertical asymptote at _____________________________.






Ex 2	Graph each.
[image: ][image: ]
[image: ]








Properties of the Cotangent Function
1)  
2)  
3)  The cotangent function is an ______ function, as the symmetry of the graph with respect to the origin indicates.  Moreover, ________ .
4)  The cotangent function is periodic, with period ______.
5)  The -intercepts occur at 
6)  The -intercept is ________.
7)  Vertical asymptotes occur at 
















Ex 3	(#43’)	If  is any number, how many solutions does the equaton  have in the interval ?  ?











Ex 4	Write the function for each graph.  Assume no phase shift.
 
 
[image: ](a)[image: ]	            (b)












	_________________________					_______________________


[image: ][image: ](c)							(d)












	____________________________				__________________________

[image: ]
(e)
	












	________________________________		

Sec 4.4: Graphs of the Secant and Cosecant Functions
The secant and cosecant functions, sometimes referred to as reciprocal functions, are graphed by making use of the reciprocal identities.




Note that secant is an even function.  Thus, .
[image: ]
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	






[image: ]
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	










Ex 1	Graph each function over a one period interval. 



[image: ][image: ]






















Ex 2	Write the function for each graph.


(a)   				(b)					(c)







Sec 4.5: Harmonic Motion
Simple harmonic motion is an important concept for those studying engineering or physics.








Idea:  A weight is attached to a coiled spring.  It is pulled down a distance of 20 cm from its equilibrium position and released.  The time for one complete oscillation is 4 seconds.

VISUAL:














Simple Harmonic Motion
The position of a point oscillating about an equilibrium position at time  is modeled by either  or , where  and  are constants, with .  The amplitude of the motion is , the period is , and the frequency is  oscillations per minute.  (The number of cycles per unit of time is called the frequency and is equal to the reciprocal of the period.)






Ex 1	(#4)	A weight on a spring has initial position  and period .  
(a)	Find a function  given by  that models the displacement of the weight.






(b)	Evaluate .  Is the weight moving upward, downward, or neither when ?  Support your results graphically or numerically.









Ex 2	(#6)	A note on the piano has frequency .  Suppose the maximum displacement at the center of the piano wire is given by .  Find constants  and  so that the equation  models this displacement.  Graph  in the viewing window .
[image: ]











[image: CE04-05-01]Ex 3	(#10)	An object is attached to a coiled spring as in the figure given.  It is pulled down a distance of 6 units from its equilibrium position and then released.  The time for one complete oscillation is  4 sec.
(a)	Give an equation that models the position of the object at time .



(b)	Determine the position at  .



(c)	Find the frequency.



Ex 4	(#14)	The period in seconds of a pendulum of length  in feet is given by:

How long should the pendulum be to have a period of 1 sec?




Ex 5	(#18)	The position of a weight is attached to a spring is  inches after  seconds.  
a)	What is the maximum height that the weight rises above the equilibrium position?


b)	What are the frequency and period?



c)	When does the weight first reach its maximum height?


d)	Calculate and interpret .
Chapter 4 Trig Graphing Review
									
							Name :______________________________
									Date :___________________

1.  Determine the period of each function.



(a) 						(b)  









(c) 					(d)  










2.  Determine the amplitude, phase shift, and range for each function.



(a) 						(b)  









(c) 					(d)  




3.  Graph each of the following trigonometric functions.  Graph at least one period.   Clearly label the intervals, any asymptotes, etc. 



(a) 						(b)  


[image: ]            [image: ]






(c)   				(d)  


[image: ]             [image: ]






(e)  				(f)  


[image: ]              [image: ]






(g)  					(h)  





[image: ]              [image: ]



4.  Write the function that describes each graph.  Assume no phase (horizontal) shift.


[image: ][image: ]
[image: ]



(a)
				 	(b)				    (c)




[image: ]


[image: ]
[image: ]






(d) 					(e)  					(f) 








[image: ][image: ]








        (g)							(h) 

5.  Write the function for each graph.  Assume no phase shift.
[image: ][image: ][image: ] 
(a)
(a)				(b)					   (c) 	
6.  Match the function with its graph.



 
[image: ][image: ]
[image: ]

		            


    (a)				     (b)							
[image: ]	
[image: ]		(c)



[image: ]



 (d) 					(e)		
[image: ]

[image: ]


	






















































Sec 5.1: Fundamental Identities

An identity is an equation that is satisfied by every value in the domain of its variable.  We will be verifying trig identities in section 5.2.


Below are identities that must be memorized perfectly for hw, quizzes, and exams.  Note that numerical values can be used to help check whether or not an identity was recalled correctly.

Fundamental Identities
Reciprocal Identities



Quotient Identities



Pythagorean Identities



Negative-Angle Identities



























Ex 1  (#16)	Find  if  and .WARNING:
 does NOT imply that  and 







Ex 2  (#38)	Find the remaining five trig functions if  and .











Ex 3	Write each expression in terms of sine and cosine, and simplify so that no quotients appear in the final expression and all functions are of  only.
a)  (#70)












b)  (#76)								c)  (#82)















Ex 4  (#86)	Let .  Find all possible values of 


















Include Factoring review
Sec 5.2: Verifying Trigonometric Identities
One of the skills required in more advanced mathematics, especially calculus, is the ability to use identities to write expressions in alternative forms.

Warning:  Techniques used to solve equations, such as adding the same term to each side, and multiplying each side by the same term.  To avoid the temptation, one strategy is to work with only ONE side and rewrite it until it matches the other side.  Your proofs will be graded on not only correctness but presentation as well.  

If  both sides of an identity is equally complex, the identity can be verified by working independently on the left side and on the right side, but these steps are considered scratch work.  You must rewrite the proof using the fact that each step (of one side) of your scratch work is reversible.

Ex 1  (#12)	Perform each indicated operation and simplify the result so that are no quotients.









Ex 2	Factor each trig expression.  (Simplify if possible.)
a)  (#16)							b)  (#18)							












c) (#22)							d)













Ex 3  	Each expression simplifies to a constant, a single function, or a power of a function.  Use the fundamental identities to simplify each expression.
a)  (#32)								b)  (#34)










Ex 4	Verify that each trig equation is an identity.
a)  (#42)							















b)  (#48)								c)  (#66)




















d)  (#70)  								
























e)  (#76)





								






















f)  (#78)								g)


















































Sec 5.3: Sum and Difference Identities for Cosine
Does ?  Why or why not?







Derive the formula for .  (Sum Identity for Cosine)  Use the result to find the Difference Identity for Cosine.


























Cofunction Identities




Cosine of a Sum or Difference








Use a cosine identity to derive a cofunction 
identity below.








Ex 1	Find each exact value.
a)  (#12)							b) (#16)















Ex 2  (#40)	Find one angle that satisfies the equation.










Ex 3	(#48)	Write the expression as a function of .  









Ex 4  (#56)	Find  and .











Ex 5  (#58)	Determine if the statement is true or false.















Ex 6	Verify that each equation is an identity.
(#70)
 		





















































































Sec 5.4: Sum and Difference for Sine and Tangent
Derive the Sum Identity for Sine.  Next, use the result to find the Difference Identity for Sine.























Sine of a Sum or Difference



Tangent of a Sum or Difference












Derive the Sum Identity for Tangent.  
















Ex 1  	Find each exact value.
(#16)  								(#18)























Ex 2  Write each function as a single function of  or .
(#28)								(#36)
























Ex 3  (#48)  Given:


Find (a) 				










(b) 			









(c) the quadrant of 









Ex 4	Find each exact value.
								(#56)
















Ex 5	Verify each identity.
(#62)  PP















(#66)


































Sec 5.5: Double-Angle Identities
Derive the double-angle identity for cosine.




























Double-Angle Identities





Product-to-Sum Identities





Sum-to-Product Identities



























Ex 1	Find the values of the sine and cosine functions for each angle measure.
a)  (#12)						b)  (#14)


























Ex 2	Verify each identity.
(#30)							(#32)  





















(#36)



















Ex 3
(#38)							(#40) 

							













(#46)							(#48)













Ex 4  (#50)	Express  as a trig function of .

















Ex 5  (#60)	Write as a sum or difference of trig functions.	













Ex 6  (#66)	Write as a product of trig functions.	



















Chapter 5 Identity Review
			Name:__________________________
										Date:_____________
Verify each of the following identities:

1.				 









2.				 













3.				 











4.				 















5.				 














6.				 












7.				 















8.				 












Sec 5.6: Half-Angle Identities
Derive the half-angle identity for sine, cosine and tangent.

















































Half-Angle Identities
Choose the correct sign based on the function under consideration and the quadrant of .




NOTE:  The last two formulas have the advantage of not requiring a sign choice.













Ex 1  (#12)	Evaluate.		
















Ex 2	Find each.
a)  (#24)												




















b)  (#26)














c)  (#30)

















Ex 3	Write as a single trig function.
(#38)					(#40)					(#44)














Ex 4	Verify each identity.
(#48)								(#52)
















 	









Ex 5



(#53) 	


Use the half-angle identity 			  to derive the equivalent identity

by multiplying the numerator and the denominator by   (the ‘conjugate’).

















Sec 6.1: Inverse Circular Functions
Try Problem:

Given .  (a)  Is this a function?  
(b)  Is it a one-to-one function? 


 (c)  Find its inverse.




Fundamental Topics of Trig:	Graphs, identities, inverse functions and notation, solving equations.  All require proficiency with trig evaluation.

Review
Defns	
A function is a relation (a set of ordered pairs) where each -value corresponds to exactly ONE -value.  A one-to-one (1-1) function is a function where each -value corresponds to exactly ONE -value.

If  is a function, the inverse of f  is a relation consisting of all ordered pairs  where .  If  is 1-1, then its inverse is a function.  The inverse function, denoted , is defined as


Warning!  

Horizontal Line Test (HLT)
A function is one-to-one if every horizontal line interests the graph of the function at most once.


4 Biggies of Inverse Functions
I.  and  values switch places
II. inverses reflect in the line      
III.    and   
IV. The inverse is a function iff  is one-to-one. 

How to Find the Inverse of a 1-1 Function
	Step 1: Replace  with 
	Step 2:   (interchange  and )
	Step 3:  Solve for .
	Step 4: Replace  with .































Ex 1	Find the inverse of .  What can we conclude?






Consider .  Define an inverse for sine.

















Inverse Sine Function
 or  means that , for .






Note:  The argument of inverse functions are real numbers and their output are angles.  In particular, arcsine takes in a real number but ‘spits out’ an angle.

Warning: 

That is, .  However,  ________=________________


Notation

 means find _______ (ONE only) such that ______________________.

vs


which means_____________________________________.  This has _____________ solutions.
Note:  _________ is the ONLY correct solution to .



Why call it arcsin? Because  (in radians) is the ____________________________________________________.






Analogy to Elementary Algebra:








Cosine is not 1-1 either (on its natural domain).  Define an inverse for cosine.





















Inverse Tangent:






Inverse Cosine Function
 or  means that , for .

Inverse Tangent Function
 or  means that , for .

Inverse Cotangent, Secant, and Cosecant Functions
 or  means that , for .

 or  means that , for .

 or  means that , for .













Note:	The inverse secant and inverse cosecant functions are sometimes defined with different ranges.  We use intervals that match those of the inverse cosine and inverse sine functions (except for the missing point).


	Inverse
Function
	Domain
	Range

	
	
	Interval
	Quadrants

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
























Ex 2  (#8’)	Consider the inverse cosine function, defined by , or .  
a)	Is this function increasing or decreasing?







b)	.  Why is  not equal to ?









Ex 3  (#11)	Is  calculated as   or as ?




Ex 4	Evaluate each if possible.
(#14-36 evens)
(a) 







						(d)  








       (e)  








       (g)  				(h)  








Ex 5	Evaluate if possible.  State answer in degrees.
(#38)							(#48)
(a) 











Ex 6	Evaluate. 











(#80)								(#84)











(#86)		
(g)  						(h)












(#92)							
(i) 










(j)













Ex 7  	Write as an algebraic (non-trigonometric) expression in .
(#102)




















(#106)

























































Sec 6.2: Trigonometric Equations I 
Ex 1	Solve each equation for all  such that .
(#13)							(#22)



















Ex 2 	Solve each equation for  such that .  Note: On exam, numbers will work out nice (no calculators)





























Ex 3	Solve each equation ( in radians and  in degrees) for all exact values.  Note:  HW says round.  Obtain exact answer first (this is your quiz/exam answer) then round (this is your hw answer).  Write answers using the least possible nonnegative angle measures.  Round degrees to the nearest tenth and radians to four decimal places.  

(#44)							

(b)  






















(#50)							

		(d)  






















(e)	
















Ex 4	Grade the solution.
Problem:  Solve for all values of  that satisfy .

Solution:






Ex 5	Solve for all values of .
a)























b)						c)



















































Factoring & Zero Factor Property Review
Name :_______________________ 
Date :_________________
Factor Completely:

1. [image: ]						2.  





3. [image: ]					4.  





5.[image: ]						6.  





7. [image: ]						8.  






9. [image: ]						10.  







11. [image: ]					12.  						


13. [image: ]						14.  [image: ]






Solve:
Remember, if the equations are quadratic in form you have the following 4 tools:
1. Quadratic Formula
2. Factoring (ZFP)
3. Complete the Square
4. Square Root Property – Don’t forget the ___________
5. 




15. 					16.  



















17.  					18   

















Sec 6.3: Trigonometric Equations II 
Ex 1	Solve each equation for  such that  and for  such that .
(#16)							(#18)





















(#20)							(#24)

























Ex 2	Solve each equation ( in radians and  in degrees) for all exact values.  Note:  HW says round.  Obtain exact answer first (this is your quiz/exam answer) then round (this is your hw answer).  Write answers using the least possible nonnegative angle measures.
(#34)							(#36)





















(#38’)  Solve for only values in  				(#42)  Solve for only values in 

























Sec 6.4: Equations Involving Inverse Trigonometric Functions 
Ex 1	Solve.
(#12)							(#16)























(#20)							(#28)

























(#30)							(#34)



















(#38)							(#40)



















(#42) PP


Ans:  







Solving Trigonometric Equations


I. Solve each equation for  if .


1) 						2) 











3) 					4) 










II.  Solve each equation for  if .


5) 				6) 
























7) 				8) 




















9) 					10) 




























Key Functions:      Logarithm


The graph of  is shown below. Use this graph to draw the graph of .	

[image: y=2^x]

*Label five ordered pairs on both graphs.  



*Use interval notation to list the following for the logarithmic function:

Domain:_________________________


Range:___________________________

*What is the asymptote of the graph of


?  ___________________


*What is the base in  ? __________

What is it called?  _______________________

*What is the base in ?  _____________

What is it called?  _________________________

1. Sketch the graph of each function.  Draw and label the asymptote.

a)	
[image: ]


b)	

	[image: ]

c)	

[image: ]

d)	

[image: ]


2. Rewrite each logarithm in exponent form.


a)	



b)	



3. Rewrite each exponent in logarithm form.


a)   


b)  	



4. Solve each equation for all values of ‘x’ where .


a)	





b)	





5. Evaluate where:


a)	







b)	








6. Use log properties to rewrite. Simplify if possible.


For any positive numbers M, N, a (), and any real number p:
· 
 
· 

· 



a)	 




b)	 	




c)	 



d)   	 



7. Solve.


a)   







b)   







Sec 7.4:  Vectors, Operations, and Dot Product
Defn
A vector is a physical quantity that has both magnitude and direction.  Typical vector quantities include velocity, acceleration, and force.  We use a directed line segment to represent a vector quantity.  The length of the vector represents the magnitude and the direction of the vector, indicated by the arrowhead, represents the direction of the quantity.













[image: ]









Vector Notation and Facts
				

 is the initial point whereas  is the terminal point



The magnitude of the vector  is .  

Two vectors are equal iff (if and only if) the have the same direction and same magnitude.
Same Vectors
[image: ]






[image: ]


The sum of two vectors is also a vector.  We use the parallelogram rule to find the sum of two (geometric) vectors.  Add “tail to tip”.  

Add vector  with vector .  The sum  is called the resultant vector.

Is vector addition commutative?	YES		NO

For every vector , there is a vector  that has the same magnitude as  but opposite direction.  

Draw  and .
Ex 1	Use the vectors in the figure to graph the vector.
(#14) 



[image: ]














Ex:










Defn
A vector with its initial point at the origin is called a position vector.  A position vector  with its endpoint at the point  is written .  So, .

horizontal component and  vertical component

Geometrically, a vector is a directed line segment whereas algebraically, it is like an ordered pair (whose initial point is at the origin).

The positive angle formed between the positive -axis and a position vector is called the direction angle.













Magnitude and Direction Angle of a Vector 
The magnitude (length) of vector  is given by the following.

The direction angle  satisfies 







Horizontal and Vertical Components
The horizontal and vertical components, respectively, of a vector  having magnitude  and direction angle  are the following.



That is, 








Parallelogram Properties
1. A parallelogram is a quadrilateral whose opposite sides are parallel.
2. The opposite sides and opposite angles of a parallelogram are equal, and adjacent angles of a parallelogram are supplementary.
3. The diagonals of a parallelogram bisect each other, but they do not necessarily bisect the angles of the parallelogram.








Vector Operations
Let  and  represent real numbers.


  (k is a called a scalar)
If , then 










Defn
A unit vector is a vector that has magnitude 1.  Two useful vectors are  and  and are graphed below.



If , then .










Ex 2	Given vectors  and , find 	(a) 		(b) 		(c)  
(#26)								(#28)

















The dot product of two vectors is a scalar (a real number), NOT a vector.  It is also known as the inner product.  Dot products are used to determine the angle between two vectors, to derive geometric theorems, and to solve physical problems.  (Once we have the formula for the geometric interpretation of the dot product, we will see that we can think of the dot product  as how much the projection of  is going in the same direction of .)

Dot Product
The dot product of the two vectors  and  is denoted  , read “ dot ” and is given by the following.

Note:	The dot product is a scalar, not a vector!





Properties of the Dot Product
For all vectors  and  and scalars , the following hold.

(a)					(b)	

(c)			(d)	

(e)					(f)	










Derive the Formula for the Geometric Interpretation of the Dot Product (for 2-dim)  (using Law Cosines)






























Geometric Interpretation of the Dot Product
If  is the angle between the two nonzero vectors  and , where , then the following holds.


Note:	If , the angle is acute.
	If , the angle is a right angle.  (The vectors are thus perpendicular or orthogonal.)
	If , the angle is obtuse.











Ex 3  (#30)	For the pair of vectors with angle  between them, sketch the resultant.









Ex 4  (#34)	Find the magnitude and direction angle for the vector .







Ex 5  (#42)	Find the magnitude of the horizontal and vertical components of , if  is the direction angle.		







Ex 6	Write each vector in the form .
(#44)						(#48)












Ex 7  (#52)	Two forces of 37.8 lb and 53.7 lb act at a point in the plane.  The angle between the two forces is .  Find the magnitude of the resultant force.









Ex 8  (#56)	Find the magnitude of the resultant force using the parallelogram rule.
[image: ]






Ex 9  (#66)	Given  and , find .




Ex 10	Find the dot product for each pair of vectors.
(#74)							(#76)
							








Ex 11  (#78)	Find the angle between  and .
















Ex 12	Determine whether each pair of vectors is orthogonal.
(#88)						(#90)						(#92)
				         					









Section 7-5 Application of Vectors (lecture examples)
Read each problem carefully and start with a sketch of the situation.  Then use what you know about vectors to solve each problem.  

1)  An arrow is shot into the air so that its horizontal velocity is 25 feet per second and its vertical velocity is 15 feet per second.  Find the velocity of the arrow.











2)  A boat is crossing a river that runs due north.  The heading of the boat is due east, and it is moving through the water at 12.0 mph.  If the current of the river is a constant 3.25 mph, find the true course of the boat.










3)  An airplane has a velocity of 400mph southwest.  A 50mph wind is blowing from the west.  Find the resultant speed AND direction of the plane.















4)  A plane is flying at 170 miles per hour with heading 52.5 due north.  The wind currents are a constant 35.0 miles per hour at 142.5 due north.  Find the ground speed and true course of the plane.













5)  Two rescue vessels are pulling a broken-down motorboat toward a boathouse with forces of 840 lb and 960 lb.  The angle between these forces is 24.5.  Find the magnitude and the direction of the equilibrant force with the 840 lb force.














6) Find the force required to keep a 2000-lb car parked on a hill that makes and angle of 30  with the horizontal.











Sec 7.5: Applications of Vectors
Ex 1  (#8)	Find the force required to keep a 3000-lb car parked on a hill that makes an angle of  with the horizontal.  


















Ex 2  (#21)	An airline route from San Francisco to Honolulu is on a bearing of .  A jet flying at 450 mph on that bearing encounters a wind blowing at 39.0 mph from direction of a .  Find the resulting bearing and ground speed of the plane.


























Ex 3  (#25)	A pilot is flying at 190.0 mph.  He wants his flight path to be on a bearing of .  A wind is blowing from the south at 35.0 mph.  Find the bearing he should fly, and find the plane’s ground speed.






















Ex 4  (#29)	An airplane is headed on a bearing of  at an airspeed of 240 km per hr.  A 30-km-per-hr wind is blowing from a direction of .  Find the ground speed and resulting bearing of the plane.
























Sec 8.1: Complex Numbers

Defns	The imaginary unit  is equal to .  		 and therefore 

	A complex number has the form  where  and  are real numbers.   is the real part whereas  is the imaginary part.

Arithmetic with Complex Numbers
For complex numbers  and , 

	
and
	
We add/subtract the real parts and add/subtract the imaginary parts.



Property of Complex Conjugates
For real numbers  and ,













										Cycle of 




















Ex 1  	Identify each number as rational (real), irrational (real), pure imaginary (complex), or nonreal complex.  (More than one description may apply.)















Ex 2	Solve.
(#30)							(#36)
						













Ex 3	Simplify.  Write answers in  form (standard form) when possible.
(#22)					(#24)					(#38)








(#40)					(#48)					(#52)












(#56)					(#62)						(#74)












(#78)					(#80)					(#84)















(#92)					(#102)					(#104)



















Ex 4  (#107)	Show that  is a square root of .
























































Sec 8.2: Trigonometric (Polar) Form of Complex Numbers
We cannot order the complex numbers (as we can with ) but  a 1-1 correspondence between the set of all complex numbers, , and the set of all 2-dimensional vectors ( matrices), .

Plot several complex numbers.
		






Plot a few complex numbers and add them.  










What is the relationship between the sum of complex numbers and the sum of vectors?











What is the rectangular form of a complex number?  

Establish relationships among  and  using the figure.
Relationships Among  and 

1)

2)				4)

3)















What is the polar form of a complex number?










Polar Form of a Complex Number
The polar (trigonometric) form of the complex number  is 



where  and  is the angle direction angle of the vector .   is called the modulus of  and  is called the argument of .  We often choose .  Abbreviation: 










Ex 1	Find the sum of the complex numbers.  Graph each and their resultant.
								(#24)
















Ex 2	Write each complex number in rectangular form.
(#34)							(#38)












Ex 3	Write each complex number in polar form with .  
(#40)					(#44)					(#48)
















Ex 4 (#59-62)	Describe the graphs of all complex numbers  satisfying the specified conditions.

The absolute value of  is 1.				The real and imaginary parts of  are equal.










The real part of  is 1.					The imaginary part of  is 1.































































Sec 8.3: The Product and Quotient Theorems

Find  where  and .


















Find where  and .









Product Theorem
If  and  are any two complex numbers, then the following holds.



In compact form: 


Multiply the lengths.  Add the angles.

Quotient Theorem
If , then the following holds.


In compact form: 


Divide the lengths.  Subtract the angles.






















Ex 1	Find each and write in rectangular form.
(#8)									(#12)				















(#16)							
















(#20) 							(#24)
















Sec 8.4: De Moivre’s Theorem; Powers and Roots of Complex Numbers





















De Moivre’s Theorem
If  is a complex number and if  is any natural number then the following holds.



In compact form:


Defn
For a natural number , the complex number  is an nth root of the complex number  if


nth Root Theorem
If  is natural number,  is a positive real number, and  is in degrees, then the nonzero complex number  has exactly  distinct  roots given by the following.


where 


If  is in radians, then 



























Proof of nth Root Theorem:















Ex 1	Find each power.  Write in rectangular form.
(#4)  PP								(#6)			

Ans:  8



















(#10)











Ex 2	(a)  Find all cube roots of each complex number.  Leave answers in polar form.
(b)  Graph each cube root as a vector in the complex plane.
(#20)								

















Ex 3  (#30)	Find and graph all fourth roots of .














Ex 4  	Solve for all (complex) solutions.  Leave answer in rectangular form.
















Try problems:



















































Sec 8.5: Polar Equations and Graphs
Why polar coordinates?
· Different, sometimes more efficient, way to represent a point or graph.  (e.g. shortest distance)
· Makes some applications/equations easier to work with (e.g.  vs ____________________ and using DeMoivre's Theorem vs Binomial Theorem)
· Some non-functions in rectangular coordinates are functions in polar coordinates  so we can apply rules/theorems of functions that we wouldn't be able to otherwise

Rectangular Coordinates VS Polar Coordinates








· Pole
· Polar Axis
· Coordinates of the pole ___________
Examples: 								






Are points uniquely defined?  






Polar Coordinates  Rectangular Coordinates













Ex 1 	Find the rectangular coordinates of each point.
						 			  
										






Ex 2 	Find the polar coordinates of each rectangular coordinate.
 				 				
									 







Ex 3 	Rewrite each rectangular equation in polar equation.
			 		 		 













Ex 4 	Rewrite each polar equation in rectangular equation.



















Symmetry WRT…
Polar axis  Replace  by .		Line   Replace  by 	Pole  Replace  by 






Ex 5 	Transform each polar equation into rectangular equation.  Then identify and graph the equation.
 						 				 


[image: ]
[image: ][image: ]







Lines  Should be able to convert to polar form.  Need to know the graphs of polar form for all but  type.		
					Polar Form				Graph












  ()




				--------------------------			--------------------------




													


Circles 
					Rectangular Form			Graph








Rose Curves								     


				
3 petals






				
				
4 petals






				
				
3 petals





				
				
4 petals






(www.wolframalpha.com)
							
			
			







NOTE:	Cosine rose curves start on _________________ and Sine rose curves start in __________ and has a petal on the __________________-__________.










Cardioid	Passes through pole














Limaçon w/out Inner Loop	Does NOT pass through pole 














Limaçon w/Inner Loop	Passes through pole














Lemniscate	Figure 8




[image: ][image: ][image: ][image: ]
The Cycle of a Rose Curve

For each Rose Curve, fill in enough of the table to complete the graph one time.
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2)	
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3)				
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4)	
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[image: polar_12-4l_42998_md]


							Name :____________________________
Polar Equations and Graphs


1.  							        2.
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3.  								4.	
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5.  								6.	
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7.  						8.	
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Math 335  Polar Equations and Graphs Homework Handout					
Use pencil and circle final answers.

Convert each rectangular equation into polar equation.   (solve for ‘r =’ whenever appropriate)


1)							2)	










3)							4)	











5)						6)	














7)							8)	

Convert each polar equation into rectangular equation.



9)						10)	








11)						12)	









13)						14)	








Problems 15 – 24.  Graph each polar equation.


15)							16)	
[image: polar_12-4l_42998_md]   		[image: polar_12-4l_42998_md]








17)	r = 2						18)	

[image: polar_12-4l_42998_md]		[image: polar_12-4l_42998_md]




19)						20)		
[image: polar_12-4l_42998_md]		[image: polar_12-4l_42998_md]		




21)						22)			
[image: polar_12-4l_42998_md]		[image: polar_12-4l_42998_md]	




23)						24)		
[image: polar_12-4l_42998_md]		[image: polar_12-4l_42998_md]

Problems 25 – 26.  Graph each of the polar equations.

25)						
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26)	

	

	0
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


	r
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27. Circle the graph that matches the given polar equation.

(a)						(b) 
[image: ]			[image: ]
(c)[image: ]		(d)[image: ]




28.	

a.[image: ]		b.[image: ]

c.[image: ]		d.[image: ]




29. 

a.[image: ]		b.[image: ]

c.[image: ]		d.[image: ]



30. 

a.[image: ]		b.[image: ]

c.[image: ]		d.[image: ]

Graph each polar equations.


31. 						32. 

























33. 							34. 






















35. 							36. 
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