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9.1

Exponential Functions e

SR

Exponential Equations = Compound Interest |

Exponents and Properties = Exponential Functions = | Models and Curve Fitting

The Number e and Continuous Compounding = Exponentia

es Recall from algebra the definition of 4

i
Exponents and Propert " then for appropriate values of r auiil

TEACHING Tip : : ST
Have students ris a rational number: if 7

review Appendix C on Functions

and Appendix D on Graphing P gt Va)".

Techniques before beginning this

section. i — [ “‘6 — 8,
For example, 16 (\ : )

1
27I1=__l_= e

and 64 7=

g _i3
kT 64"~ Ved
In this section we extend the definition of a” t(i/iincl'ude all
rational) values of the exponent 7. For example, 2*° might be ev

approximating the exponent \/3 with the rational numbers 1.7, 1.73
50 on. Since these decimals approach the value of V/3 more and r

it seems reasonable that 2V* should be approximated more and
by the numbers 2'7, 2'7, 2'7*, and so on. (Recall, for example
2710 = (%)'7. In fact, this is exactly how 2V3 is defined (in a mo
course). To show that this assumption is reasonable, Figure 1 gives g
function f(x) = 2' with three different domains.
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Using this interpretation of real exponents, all rules and tl
nents are valid for all real number exponents, not just ratio
to the rules for exponents, we use several new properties in t
example, if y = 2°, then each real value of x leads to exactly
therefore, y = 2" defines a function. Furthermore,

if 2" =24 then x =4,

and if ¥ =4 then Pk i

>
Also, # < & but l = l 1.4
2/ ~ A



= mi=rpretabons

=5 That s, propesty

= ¢* s 2 funcion
- . propenty (b)

=+>-one, property

~csasing &

~=tv (d) ssys that

LOS

o1 wﬂmm

In general when g > l,'nuusi.glhexpmanonalmdsmalwgermnma.
"Tl 0 < a < 1. increasing the exponent on a leads to 2 smaller pumber.

: Properties are generalized below. Proofs of the propertics are not
given here, as they require more advanced mathematics

Properties (a) and (b) require a > 0 so that &* is always defined. For example.
(‘Q'ismlmﬂmifx=%.'m‘smthata‘willalwaysbepositive.
since @ must be positive. In property (a). @ cannot equal 1 becanse I' =1 for
e‘ﬂymﬂmﬂnhﬁnd‘x,soeailvdmofﬂmdsmmesamerealnmrgxnl-
For property (b) to hold, @ must not equal 1 since, for example. I' = T, even
though 4 = 5.

If flx) = 2* find each of the following.
@ fi-1) ®) 73 © ;(%) @ fi492)

s I "»r . e e Yoy ¥

Use a calculator.

Now try Exerdses 3,9, and 11.
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NOTE If a= 1. the function becomes the constant function (

f(x) = 1, not an exponential function.

y Figure 1 showed the graph of f Co) =2 Wit.h th.ree differer.lt dom
peat the final graph (with real numbers as domain) in the margin. The y~

o g -] isy = 29 = 1. Since 2* > 0 for all x and 2° — 0 as x — —co, theSeas

gl zontal asymptote. As the graph suggests, the domain of the function
and the range is (0,%). The function is increasing on its entire doy
b therefore is one-to-one. Our observations from Figure 1 lead to the

generalizations about the graphs of exponential functions.

"EXPONENTIAL FUNCTION "V

Domain: (—%,%) Range: (0,

For f(x) = 2% " f(x)=a*,a>1
x f@x) A
1
=0 ? ( |) (1. a)
—1 5 -1, =
- 0, 1)
0 1 “/'/0( > x
1 2
2 4
3 8
Figure 2

e flx) =a%, a> 1, is increasing and continuoué
(=00, ). e

® The x-axis is a horizontal asymptote as x — —

e The graph goes through the points (— 1 %), (0,

For f(x) = (%)x: 4)
x fx) fx)=a*0<a<1

Bl= RI= — N N o
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Startinlg with f(x) = 2 and replacing x with —x gives f(—x) =2""
el 10 A o X

('2 )* = (3)". For this reason, the graphs of f(x) = 2"and f(x) = (3)" are reflec-
tions of each other across the y-axis. This is supported by the graphs in Fig-
ures 2 and 3.

The graph of f(x) = 2*is typical of graphs of f(x) = a* where a > 1. For
larger values of a. the graphs rise more steeply, but the general shape is similar
lq the graph in Figure 2. When 0 < a < 1, the graph decreases in a manner
similar to the graph of f(x) = (%)‘ In Figure 4, the graphs of several typical
exponential functions illustrate these facts.

Lhli® el
fe = (55)" 5 f(x) = 10*
¥ =3*

fx)=2"

RO -3

f(x) =a*
Domain: (—ee, e); Range: (0, )
When a > 1, the function is increasing.
When 0 < a < 1, the function is decreasing.

Figure 4

In summary, the graph of a function of the form f(x) = a* has the following
features.

Characteristics of the Graph of f(x) = a*

—

TEACHlNG TiP Encourage students
0 memorize the characteristics of
"¢ 8raph of f(x) = a*. Ask them
i the coordinates (0, 1) and

‘ 7 are affected by different
,Mations of the graph of
U=l
\

1. The points (— 1%) (0,1), and (1, a) are on the graph.

2. If ¢ > 1, then f is an increasing function; if 0 <a <1, then f is a
decreasing function.

3. The x-axis is a horizontal asymptote.

4. The domain is (—, ), and the range is (0, ).

EXAMPLE 2 Graphing an Exponential Function

Graph f(x) = 5"

solution The y-intercept is 1, and the x-axis is a horizontal asymptote. Plot a
few ordered pairs, and draw a smooth curve through them as shown in Fig-
ure 5 on the next page. Like the fu.nCtiOn f(x) = 27, this function also has do-
main (—2,) and range (0,2¢) and is one-to-one. The graph is increasing on its

entire domain.
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Figure 5
Now try Exercisa 13

T e

EXAMPLE 3 Graphing Reflections and Translations
B

Graph each function.
(a) flx) = -2 (b) flx) =2" (0 f)=2+3
Solution
(a) The graph of f(x) = —2"is that of f(x) = 2" reflected across the x-axis, The

domain is (—2, %), and the range is (—%,0). See Figure 6.

(b) The graph of f(x) = 2' 3 is the graph of f(x) = 2* translated 3 units to the
left, as shown in Figure 7.

(¢) The graph of f(x) = 2* + 3 is that of f(x) = 2* translated 3 units up. See
Figure 8.
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The screen shows how a =
graphing calculator can be
directed to graph the three
functions in Example 3. Y, is
defined as 2%, and Ys, Y3, and
Y, are defined as reflections
and/or translations of Y. Figure 6 Figure 7 Figure 8

'S

| G0 § Il B

Now try Exercises 25 and 27.

TEACHING TP Review the prop- Exponential Equations Property (b) given at the beginning of this section
erties of exponents. is used to solve exponential equations, equations with variables as exponents.

X > r+2 1 o 2
2t = 32, 471 = 16", (E) = 0= Exponential equations

4_——-4
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The screen supports the algebraic
|t in Example 4, using the

resu : .
pt method of solution.
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EXAMPL i
E4 _Using a Property of Exponents to Solve an Equation

] X
Solve { — | =

Solution i .
Write each side of the equation using a common base.

(3]s

37" =81

Definition of negative exponent: —l ol
37 =81 (a@") = a™
37 =3 Write 81 as a power of 3.
=x=4 Property (b)
x = —4 Multiply by — I.

The solution set of the original equation is {—4}.

Now try Exercise 45.

EXAMPLE 5 Using a Property of Exponents to Solve an Equation

TeacHinG Tip Give an example
such as 16*~2 = 9' * that cannot
be solved using properties of
exponents. Show how a graphing
calculator can be used to find the
approximate solution x = 1.558.
(Mention that Section 9.3 presents
algebraic techniques for finding

the solution.)

TE!\(HING Tip Point out that it is
more convenient to write b** as
Instead of Vb,

e ———

Solve 2 == aEe)

Solution Write each side of the equation using a common base.

oxtd — gx—6
Pt = (2%° Write 8 as a power of 2.
gxtd — 318 (@Y = a”
x + 4 =3x — 18 Property (b)
—2x = =22 Subtract 3x and 4. (Appendix A)
x=11 Divide by —2.

Check by substituting 11 for x in the original equation. The solution set is {11}.

Now try Exercise 53.

EXAMPLE 6 Using a Property of Exponents to Solve an Equation

Solve 81 = b2,
g1 = b+
1 = (VB) o= (vay
+3=Vb
+27=0b

Solution

Take fourth roots on both sides.

Cube both sides.

Check both solutions in the original equation. Both check, so the solution set is

27,088

Now try Exercise 61.
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ecall the formula for simple interest, / = p,,

st R s » Whe
compound Intere annual rate of interest expresg -

i inci sposited), 7 is ed g
P is principal (amount depos A | :
dccinlnl and ¢ is time in years that the principal earns interest. Suppose ¢ ~ (3

Then at the end of the year the amount has grown (o
P+ Pr=P(l + r),
the original principal plus interest. If this balance earns mterest. at the sy
terest rate for another year, the balance at the end of that year will be
[(P(1 + 1]+ [P(1 + N =[P+ DI + r)
= P(1 + )

me jp.

After the third year, this will grow to
) 2
[P(1 + »)°]+ [P(1+ r)*]r=[P(1 + P11 + r)
= P(1 + r)
Continuing in this way produces the formula
A = P(1 +="r)f

for interest compounded annually. The following general formula for compound
interest can be derived in the same way as the formula given above.,

Compound Interest

If P dollars are deposited in an account paying an annual rate of interest r
compounded (paid) m times per year, then after ¢ years the account WiEw‘
contain A dollars, where X

o "
A= P(l v L) N g
m -

A\

In the formula for compound interest, A is sometimes called the future

value and P the present value. A is also called the compound amount and is
the balance after interest has been earned.

EXAMPLE 7  Using the Compound Interest Formula

Suppose $1000 is deposited in an account paying 4% interest per year com-
pounded quarterly (four times per year).

(a) Find the amount in the account after 10 yr with no withdrawals.

(b) How much interest is earned over the 10-yr period?

Solution
‘ & ,_ im
(a) A=P| 1+ I—)I- Compound interest formula
04 10(4)
A= l()()()(l e T) Let P = 1000, r = .04, m = 4, and ¢ = 10

A = 1000(1 + .01)* = 1488.86

Round to the nearest cent.

Thus, $1488.86 is in the account after 10 yr,
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(b) The interest carned for that period is

$1488.86 — $1000 = $488.86.

Now try Exercise 63(a).

EXAMPLE 8 Finding Present Value

Becky Anderson must pay a lump sum of $6000 in 5 yr.

(a) What amount deposited today at 3.1% compounded annually will grow to

$6000 in 5 yr?

(b) If only $5000 is available to deposit now, what annual interest rate is neces-

(a)

(b)

sary for the money to increase to $6000 in 5 yr?
Solution

r

m
AT P<] A _> Compound interest formula
m

031

s(1)
6000 = P(l = T) Let A = 6000, r = .031,m = l,andr = 5.

6000 = P(1.031)°

6000 ‘ i \
da: m Solve for P; divide by (1.031)".
P =~ 5150.60 Use a calculator.

If Becky leaves $5150.60 for 5 yr in an account paying 3.1% compounded
annually, she will have $6000 when she needs it. We say that $5150.60
is the present value of $6000 if interest of 3.1% is compounded annually
for 5 yr.

r m
A= P(l - —)
m

6000 = 5000(1 + r)° LetA = 6000, P = 5000.m = 1,and 1 = 5.

6
e a+r Divide by 5000.
6 1/5
—5— — | =iy Take the fifth root.
1/5
—1=r Subtract 1.
r= .0371 Use a calculator.

An interest rate of 3.71% will produce enough interest to increase the $5000
to $6000 by the end of 5 yr.

Now try Exercises 65 and 69.
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(1+ 4
m
S| (rOUDdE)
e ——
1 2
2 2.25
5 2.48832
10 2.59374
25 2.66584
50 2.69159
100 2.70481
500 2.71557
1000 2.71692
10,000 2.71815
1,000,000 2.71828

Figure 9

The Number e and Continuous Compoundlng The more often jpyq,
is compounded within a given timg period, the mc:reflpnt:erest will be :
Surprisingly, however, there is a limit on the am0$uln. ‘O'nlv etr ‘;St, no matt'e,. how
often it is compounded. To see this, SUppose that $1 is invested at 100 i,

per year, compounded m times per year. Then the interest rate (in decimg] f,

. el ;
is 1.00 and the interest rate per period 1S 5. Acc'o]ril)mg to the formyj, (With
P = 1), the compound amount at the end of 1 yr will be

] m
.. 4 4+ — .
A—-(l )

A calculator gives the results in the margin for various values of m, The

: f(1+—”' ets closer and
suggests that as m increases, the value of {1+ 7,/ & er and cloger ¢
some fixed number. This is indeed the case. This fixed number is called ¢,

Value of e
To nine decimal places, e =~ 2.718281828.

- AT ST PTACE

- - or oo . -

Figure 9 shows the functions defined by y = 2, y = 3%, and y = ¢*, Notice
that because 2 < e < 3, the graph of y = ¢ lies “between” the other two '

As mentioned above, the amount of interest earned increases with the fre-
quency of compounding, but the value of the expression (1 = #)”' approaches
as m gets larger. Consequently, the formula for compound interest approaches 5
limit as well, called the compound amount from continuous compounding.

Continuous Compounding

TEACHING TiP Tell students that e

is defined as 1irp ( 1+ % )m,

Looking Ahead to Calculus

If P dollars are deposited at a rate of interest » compoun:
for  years, the compound amount in dollars on deposit is

A = Pe”.

R

EXAMPLE 9 Solving a Continuous Compounding Problem ;ﬁ_

In calculus, the derivative allows us to
determine the slope of a tangent line to
the graph of a function. For the func-
tion f(x) = €, the derivative is the
function f itself: f'(x) = e*. Therefore,
in calculus the exponential function
with base e is much easier to work
with than exponential functions having

other bases.

Suppose $5000 is deposited in an account paying 3% interest compounded con-
tinuously for 5 yr. Find the total amount on deposit at the end of 5 yrI.

Solution A = Pe¢” Continuous compounding formula

= 5000e %% Let P = 5000,1 = 5, and r = .03.
= 5000e"

= 5000(1.161834) Use a calculator.

= 5809.17

or $5809.17. Check that daily

compounding would have produced a compound
amount about 3¢ less.
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EXAMPLE 10 Comparing Interest Earned as Compounding Is More Frequent

In Example 7, we found that $1000 invested at 4% compounded quarterly for
10 YT grew to $1488.86. Compare this same investment compounded annually.
semiannually, monthly, daily, and continuously.

Solu.tion Substituting into the compound interest formula and the formula for
continuous compounding gives the following results for amounts of $1 and $1000.

Compounded $1 W $1000
annually (1 + 04)° ~ 148024 | $1480.24
. 04 10(2)
semiannually 1+ 7) =~ 1.48595 $1485.95
04 10(4)
quarterly 1+ T =~ |.48886 $1488.86
04 10012)
monthly (1 oS Tf) = 1.49083 $1490.83
04 10(365) 79
dail 1 +— ~ 1.49179 $1491.
4 ( 365)
continuously e =~ 149182 | $1491.82

SR

Compounding semiannually rather than annually increases the value of the
account after 10 yr by $5.71. Quarterly compounding grows to $2.91 more than
semiannual compounding after 10 yr. Each increase in the frequency of com-
pounding earns less and less additional interest, until going from daily to contin-
uous compounding increases the value by only $.03.

Now try Exercise 71.

Exponential Models and Curve Fitting The number ¢ is important as the
base of an exponential function in many practical applications. For example, in
situations involving growth or decay of a quantity, the amount or number pre-
sent at time 7 often can be closely modeled by a function defined by

- k
y = yoe",

where y, is the amount or number present at time # = 0 and k is a constant.
The next example, which refers to the problem stated at the beginning of
this chapter, illustrates exponential growth.

EXAMPLE 11 Using Data to Model Exponential Growth

If current trends of burning fossil fuels and deforestation continue, then future

amounts of atmospheric carbon dioxide in parts per million (ppm) will increase
as shown in the table on the next page.
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Year | Carbon Dioxide (ppm)
1990 | 353
2000 | 375
2075 : 590
2175 | 1090
2275 2000 '

Source: International Panel on Climate
Change (IPCC), 1990.

(a) Make a scatter diagram of the data. Do the carbon dioxide levels appear o
grow exponentially?

= (b) The function defined by

L vy = 35';ell)()l)-‘<57417 1990)
g is a good model for the data. Use a graph of this model to estimate when fu-
- = ture levels of carbon dioxide will double and triple over the preindustria]

= 2300 level of 280 ppm.
(a) Solution
For x = 1, y = 353¢-0060857(r - 1990 (a) We show a calculator graph for the data in Figure 10(a). The data appear to
2100 have the shape of the graph of an increasing exponential function.

(b) A graph of y = 353¢™*7¢~1%9 in Figure 10(b) shows that it is very close
to the data points. We graph y = 2 - 280 = 560 in Figure 11(a) and y=
3 - 280 = 840 in Figure 11(b) on the same coordinate axes as the given
function, and use the calculator to find the intersection points.

75 -12300
300
(b) For x = 1, y = 353¢-0060857(1 - 1990) For x = t, y = 353¢-0060857(1— 1990)
y = 560 y = 840

Fi 10 . z
igure 2100 | 2100 |

D s YN B T

Intersection Interzection
1975 | =205 8284 v=s60 12300 1975 | A=2132.4543 v=Bu0 12300
100 100
(a) (b)
Figure 11

The graph of the function intersects the horizontal lines at approximatel)’
2065.8 and 2132.5. According to this model, carbon dioxide levels will
double by 2065 and triple by 2132.

Now try Exercise 73-

-
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&S Graphj

diagramsdﬁi]en%h:aciﬁzlzfnors are capable of fitting exponential curves to scatter

Plus diSplays . 0L_lnd in Example 11. Figure 12(a) shows how the'Tl-.83

example: y = () gef (d‘ffe“:«m) equation for the atmospheric carbon d10x1d§

calculator forn.1 i, ”1.0061 - (Coefficients are rounded here.) Notice that this

date Pty ng y ers from lhe model in Example 11. Figure 12(b) shows the
> dnd the graph of this exponential regression equation. m

2100
38377
82ve1
1975 : : 12300
300
(a) (b)
Figure 12
9.1 Exercises
1 I ) z
2. 278 .- 4. 5 If f(x) = 3"and g(x) = (%) , find each of the following. If a result is irrational, round
| o the answer to the nearest thousandth. See Example 1.
- 6@ T 1. f(2) 2. 3) 3. f(~2) % £6-3)
9,519 10. i 11. .039 52, 8(2) 6. 50) @:s-2 8. g(=3)
‘ 3 3
9 f(;) 10. g(7> 11. g(2.34) 12. f(1.68)
Graph each function. See Example 2.
; LAY ;
13. f(x) = 3° 14. f(x) = 4" 158, f(x) = (?> 16. f(x) = (%)
S\ 20\ :
17. )= <7> 18. fx) = (;) 19 i) = 10 20. f(x) =10""
21. flx) =47 22. flx) =67 23. f(x) = 2! 24, f(x) =27l

Sketch the graph of f(x) = 2°. Then refer to it and use graphing techniques to graph
each function as defined. See Example 3.

25 f)=2"+1 26 f)=2"—4 27 f(x) =2 28, f(x) = 24

N 1\ X . .
Sketch the graph of f(x) = (7) - Then refer to it and use graphing techniques to graph
each function as defined. See Example 3.

X 1 T
29. flx) = (%) R pay = <T> iy
] x+2 1 =4
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“fora = 2 2,.4,.75, and 31 ke
19. Concept Check The graphs of y = a’ fora = 1.8, ":3' ; i i are given in
the figure. They are identified by letter, but not necessarty in e o er as the yq.
“A j;m gi\'vn.‘(.’.\-(’ your knowledge of how the exponential function behaves for Varioys
values of the base to identify each lettered graph.
38, A G. D E F A B
4. B LT
20,
35 €
36. D
37. B P 5
38. F
-5
o0 )

4 Use a graphing calculator to graph each function as defined.

\ e " g Fiaw

39, flx) = —"— 40. f(x) =—

o a1 flx)=x-2" 42, fl)=

o

Solve each equation. See Examples 4—6.

1 k
43. 4* =2 44. 125" =5 45. (3) =4
46 <£>l = 2 4782 ¥ —8 48. 5¥*! = 25
"8 4
A= () 500ci= ()5 51. 27*%= =05
1 3x—6
528 3DH—1] G} 53042 = g 54. (-2—> = ol

. <l>‘ == (%)Hl 56 e = (é)m . (\/-2'),&4 = 4*

il l x+2 l 45 1 -
JEE= (s — = p 60. — =
58. (V/5) (3) .27 b T
6l. 4 =r* 62. 72 =32

<

Solve each problem involving compound interest. See Examples 7-9.

63. Future Value Find the future value and interest earned if $8906.54 is invested for
9 yr at 5% compounded

(a) semiannually (b) continuously.

64. Future Value Find the future value and interest earned if $56,780 is invested at

5.3% compounded

(a) quarterly for 23 quarters (b) continuously for 15 yr.

Present Value Find the present value of $25.000 if interest is 6%
quarterly for 11 quarters.

66. Present Value
monthly for [ yr.

65. compounded

Find the present value of $45,000 if interest is 3.6% compounded

67. Present Value Find the present value of $5000 if interest is 3.5% compounded
quarterly for 10 yr.
68. Interest Rate Find the required

annual interest rate to the nearest tenth of a percent
for $65.000 to grow to $65.325 i

f interest is compounded monthly for 6 months.

UL, i e
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3 69. Interest Rate  Find the required annual interest rate to the nearest tenth of a percent
for $1200 to grow to $1500 if interest is compounded quarterly for 5 yr.

70. Interest Rate Find the required annual interest rate to the nearest tenth of a percent
for $5000 to grow to $8400 if interest is compounded quarterly for 8 yr.

a 34, 1.8 BN Solve each problem. See Example 10.
« 4 37..31 38.32 , ;
et eraphs for Exercises 39 71. Comparing Loans Bank A is lending money at 6.4% interest compounded annu-
{ are siven on page A-26 of ally. The rate at Bank B is 6.3% compounded monthly, and the rate at Bank C is
¢ section at the back of 6.35% compounded quarterly. Which bank will you pay the least interest?

72. Future Value Suppose $10,000 is invested at an annual rate of 5% for 10 yr. Find

Py i the future value if interest is compounded as follows.

gl (a) annually (b) quarterly (¢) monthly (d) daily (365 days)
—xClT T J e
4 |{
1 \}/ 4 (Modeling) ~Solve each problem. See Example 11.
1| (
1 73: A'rmospheric Pressure The atmospheric pressure (in millibars) at a given altitude
| (in meters) is shown in the table.
10
= _ flx) =2% - 278 Altitude | Pressure || Altitude | Pressure
1| i 0 1013 6000 472
L [l 1000 899 7000 411
L
o =g 2000 795 8000 357
l 3000 701 9000 308
$.{—¢t M. Jil 45. {—2} 4000 617 10.000 265
3 13] 1 5000 541
46. 2 47. 0 48. {T} e e Kl e e D S - L (S
(# Source: Miller, A. and J. Thompson. Elements of
19 & J 3 | Meteorology, Fourth Edition, Charles E. Merrill Publishing
2 b | 2 I Company, Columbus, Ohio, 1993.
£0 ‘ 41 g ot F (a) Use a graphing calculator to make a scatter diagram of the data for atmospheric
e pressure P at altitude x.
J ) (b) Would a linear or exponential function fit the data better?
S 33 | = J E1 (¢) The function defined by
' [4] Bly) = 101827994
' 57. { —
- ) | 3 f approximates the data. Use a graphing calculator to graph P and the data on the
3. {-3} 59. 13} 60. {—3.3} same coordinate axes.
"“" 3,8;  62. {4} (d) Use P to predict the pressures at 1500 m and 11,000 m, and compare them to
(f' a) 513.891.16; $4984.62 the actual values of 846 millibars and 227 millibars, respectively.
/, l ,M,y; s \'(_‘ 61.70 . 74. World Population Growth Since 1990. world population in millions closely fits
Weddhenl the exponential function defined by
g -).7133.96; $68.955.96
82122333 66, $43.411.15 3= GtTae ",
' o6, Heu where x is the number of years since 1990.

70. 6.5%

7. Bask & —— (a) The world population was about 6079 million in 2000. How closely does the
: function approximate this value?
(b) Use this model to approximate the population in 2005.
(¢) Use this model to predict the population in 2015.
= (d) Explain why this model may not be accurate for 2015.

ted rate)
R 9§
19 (c) $16.470.09

i86 65

;A
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73. (a) See the answer graph for 75. Deer Population The exponential growth of the deer population in )

part (c). (b) exponential can be calculated using the model

i P(x) = 1013¢~0001341x T = 50.000(1 + .06)".
1200 2 A where 50.000 is the initial deer population and .06 is the rate of growth. T'j
w population after n years have passed. .

(a) Predict the total population after 4 yr.
(b) If the initial population was 30.000 and the growth rate was .12, a
how many deer would be present after 3 yr?

-1000 ———— LB R

0 (¢) How many additional deer can we expect in 5 yr if the initial po
(@) P(1500) ~ 828 mb: 45,000.0d the umst Srowth ok I 058 ‘
P(11,000) = 232 mb 74. (a) The 76. Employee Training A person learning certain skills involving repe
function gives approximately 6965 learn quickly at first. Then learning tapers off and approaches some v
million. which differs by 886 mil- Suppose the number of symbols per minute that a person using a word p
lion from the actual value. type is given by
(b) 7458 million (¢) 8554 million p(0) = 250 — 120(2.8),
75. (a) about 63,000 (b) about
42.000 (¢) about 21.000 where 7 is the number of months the operator has been in training. Find ez
76. (a) about 207 (b) about 235 (a) p(2) (b) p(4) (c) p(10) .-
(c) about 249 (d) The number of (d) What happens to the number of symbols per minute after several n
symbols approaches 250. training?

9.2 Logarithmic Functions
llmgaﬁthns-LogaﬁmmicEqmﬁom-ugnﬁ&mkFundiom-ProperﬁsofLogaﬁ&m

Logarithms The previous section dealt with exponential functions
form y = a" for all positive values of a, where @ ¥ 1. The horizontal
shows that exponential functions are one-to-one, and thus have in
tions. The equation defining the inverse of a function is found by interc
and y in the equation that defines the function. Doing so with

yv=a' gives x=a" (Section 6.1)

as the equation of the inverse function of the exponential function ¢
¥ = a". This equation can be solved for y by using the following defin

y=log.x lfandonly’if :

Exponent The “log™ in the definition above is an abbreviation for logarithm. R
! as “the logarithm to the base a of x.° '
Logarithmic form: y = log_& X By the definition of logarithm, if y = log, x, then the power to whi¢
be raised 1o obtain x is ¥, or x = @'. To remember the location of the ba
Base  exponent in each form, refer to the diagrams in the margin.
Exponent

! Meaning of log, x
Exponential form: @ =x A logarithm is an The Z [qg.xis
the base @ must be raised to obtain x.

Base




