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The limit is formally defined as follows:

lim f(z) =1L

r—a

if for every number € > 0 there is a corresponding number § > 0 such that
O0<|z—al<d = |f(z)—L|l<e

Intuitively, this means that for any €, you can find a ¢ such that |f(z)—L| < e.

To do the formal € — § proof, we will first take € as given, and substitute
into the |f(z) — L| < e part of the definition. Then we will try to manipulate
this expression into the form |z — a| < something. We will then let § be this
“something” and then using that 4, prove that the € — § condition holds. Some
examples should make this clear.

1. Prove:

limz =4
r—4

We must first determine what a and L are. In this case, a = 4 (the value
the variable is approaching), and L = 4 (the final value of the limit). The
function is f(x) = z, since that is what we are taking the limit of.

Following the procedure outlined above, we will first take epsilon, as given,
and substitute into |f(z) — L| < € part of the expression:
[f(z)—Ll<e = Jz—4|<e

In this case we are lucky, because the expression has naturally simplified
down to the form |z — a| < §! Therefore, since we know from the above
that |z — 4] < ¢, we can let 6 = ¢, and we know that |z — 4| < 0. This last
point is very important.

We can now finish the proof:
Given €, let § = €. Then:
lx—al<éd = |z—4|<e
= |f(z)—L|<e

This completes the proof.



2. Prove:
lim3z—-1=2

r—1

In this problem, a = 1, L = 2, f(z) = 32 — 1. We will proceed as we did
before, by substituting into |f(x) — L] < e.
[f(z)—Ll<e = |Bzx—1)—2|<e

= Bz —3|<e¢

= 3lz—1]<e

= Jz—1]<¢/3
Once again, we have simplified the expression down to the form |z —a| < 4.
In this case, we can let 6 = ¢/3, and we can write up the proof: Given e,
let § = ¢/3. Then:
|z —1] <€/3
lz—1| < e
[3x — 3| < e
Bz —1)—2| <€
(@)~ L] < e

|z —al <6

Frrel

This completes the proof.

3. Prove:
lim vz = o0
r—00
In this problem, we have a = co and L = co. If we try to apply the proof
directly, we will end up |f(z) — co| < €, which produces a meaningless
result, since, anything minus oo is co. Therefore, we need to modify or
definition of limit slightly for infinity problems.

Let us first consider what it means for the limit to be equal to infinity.
When the limit equals infinity, then that means that f(z) increases with-
out bound. In other words, for any positive integer M, there is a ¢ such
that within 0 < |z —a| < §, f(z) > M (mathematically, this is saying that
as you approach the point a, f(x) becomes larger than any finite value.

Now let us consider the other side: x — a. If we directly substitute a = oo,
following the same arguments as the last paragraph, we end up with the
same meaningless values. Therefore, we will also use a similar argument
to replace 0 < |z — a| < § with > N, where N is any positive integer.

Therefore, our modified definition of € — § for this problem will be:

lim f(z) = o0

r—00

if for every positive integer M there is a corresponding positive integer N
such that



xr>N = fx)>M

* You should work out for yourself, what the precise definitions of limit
would be if only one of x or f(x) is infinity, or if one of these is negative
infinity, etc.

Now we can proceed as before:

fle)>M = z>M
= x> M?
Here, we have matched the form x > N, which is our goal in this case.
Now we can write the proof: Given a positive integer M, let N = M?2.
Certainly N is a positive integer. Then:
>N = z>M?
= VT>M
= f(zx)>M
This completes the proof.
. Prove:

limaz?+2—-2=4
r—2

We start the same way we always do. By now this part should be auto-
matic.

If(z) - Ll <e = |(z*+z—-2)—4]<e
= |(@*+z-6)<e
= |(z+3)(z—-2)|<e
= Jz+3llzr—2|<e
€
= |lr—-2|< —F
| | |z + 3
Once again we have the left side in the form |z — a|]. Now we can let §
equal ﬁ But what do we do about the |z + 3|. In general § must be

in terms of € only, without any extra variables.
So how we can remove this x + 3 term?

First we need to simplify the problem a little bit. Since the concept of
limit only applies when x is close to a, we will first restrict x so that it
is at most 1 away from a, or, mathematically, |z — a|] < 1 (in our case
|z — 2| < 1. Then, this means, 1 <z < 3,or4 <z +3 <6.
Now consider the original inequality

€

r—2| < —
| | |z + 3|



Notice that the right hand side is at the minimum when x 4 3 is at its
mazimum. Since the maximum of z 4 3 is 6, we know that
€ €

ol —S < S
o —2| lt+3] 6

Since we now have two restriction,

lz—2] <1 and \1:—2|<%

we let § = min{l, &}, the smaller of these two values, which guarantees
that it will satisfy both inequalities.

Finally, after all this, we can write up the proof:
Given ¢, let 0 = min{l, §}.

Suppose § = 1. Since 1 < &, we know € > 6. Then:

|t —a|<d = Jz—2/<1
= |z —2|lz+3| <|z+ 3]
= |2’ +2—6]<|z+3
We know that 4 < x + 3 < 6, using the same restriction we worked out

earlier. We also know that 1 < & (because d is the minimum of those two
values). Therefore € > 6. Putting these together, we have

e+ -6/ <|r+3] = [2°+z-6/<|z+3|<6<e¢
= |(2?+z—-2)—4<e
= |f(x)—L|<e

This completes the case § = 1.

Now suppose § = ¢. Then:
€
|z —a|<d = Jz—-2|< G
Once again we know that 4 < x + 3 < 6, therefore

w21 <t = le-2@+3) <63

= |2*+2—-6/<e
= [(z?+z—-2)—4|<e
= |f(zx)—L|<e

Finally, this completes the proof.



