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748 Chapter 11 Vectors and the Geometry of Space

11.1 Vectors in the Plane

Write the component form of a vector.
Perform vector operations and interpret the results geometrically.
Write a vector as a linear combination of standard unit vectors.

Component Form of a Vector
Many quantities in geometry and physics, such as area, volume, temperature, mass, and
time, can be characterized by a single real number that is scaled to appropriate units of 
measure. These are called scalar quantities, and the real number associated with each
is called a scalar.

Other quantities, such as force, velocity, and acceleration, involve both magnitude
and direction and cannot be characterized completely by a single real number. A directed
line segment is used to represent such a quantity, as shown in Figure 11.1. The 
directed line segment has initial point and terminal point Q, and its length (or
magnitude) is denoted by Directed line segments that have the same length and
direction are equivalent, as shown in Figure 11.2. The set of all directed line segments
that are equivalent to a given directed line segment is a vector in the plane and is
denoted by 

In typeset material, vectors are usually denoted by lowercase, boldface letters such as
and When written by hand, however, vectors are often denoted by letters with

arrows above them, such as , , and .
Be sure you understand that a vector represents a set of directed line segments

(each having the same length and direction). In practice, however, it is common not to
distinguish between a vector and one of its representatives.

Vector Representation: Directed Line Segments

Let be represented by the directed line segment from to and let be 
represented by the directed line segment from to Show that and are
equivalent.

Solution Let and be the initial and terminal points of and let
and be the initial and terminal points of as shown in Figure 11.3. You

can use the Distance Formula to show that and have the same length.

Both line segments have the same direction,
because they both are directed toward the 
upper right on lines having the same slope.

Slope of 

and

Slope of 

Because and have the same length 
and direction, you can conclude that the two
vectors are equivalent. That is, and are 
equivalent.
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A directed line segment
Figure 11.1

Equivalent directed line segments
Figure 11.2
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The directed line segment whose initial point is the origin is often the most
convenient representative of a set of equivalent directed line segments such as those
shown in Figure 11.3. This representation of is said to be in standard position. A
directed line segment whose initial point is the origin can be uniquely represented by
the coordinates of its terminal point as shown in Figure 11.4.

This definition implies that two vectors and are equal if and
only if and 

The procedures listed below can be used to convert directed line segments to
component form or vice versa.

1. If and are the initial and terminal points of a directed line 
segment, then the component form of the vector represented by is 

Moreover, from the Distance Formula, you can see that the length (or magnitude) 
of is

Length of a vector

2. If then can be represented by the directed line segment, in standard
position, from to 

The length of is also called the norm of If then is a unit vector.
Moreover, if and only if is the zero vector 

Component Form and Length of a Vector

Find the component form and length of the vector that has initial point and
terminal point 

Solution Let and Then the components
of are

and

So, as shown in Figure 11.5, and the length of is

 � 13.

 � �169

 � v � � ���5�2 � 122

vv � ��5, 12�,

v2 � q2 � p2 � 5 � ��7� � 12.

v1 � q1 � p1 � �2 � 3 � �5

v � �v1, v2�
Q��2, 5� � �q1, q2 �.P�3, �7� � � p1, p2 �

��2, 5�.
�3, �7�v

0.v� v � � 0
v� v � � 1,v.v

Q�v1, v2�.P�0, 0�
vv � �v1, v2�,

 � �v1
2 � v2

2.

 �v� � ��q1 � p1�2 � �q2 � p2�2

v

�q1 � p1, q2 � p2�.�v1, v2� �

PQ
\

v
Q�q1, q2 �P�p1, p2�

u2 � v2.u1 � v1

v � �v1, v2�u � �u1, u2�

Q�v1, v2�,

v
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Definition of Component Form of a Vector in the Plane

If is a vector in the plane whose initial point is the origin and whose terminal
point is then the component form of is

The coordinates and are called the components of If both the initial 
point and the terminal point lie at the origin, then is called the zero vector
and is denoted by 0 � �0, 0�.

v
v.v2v1

v � �v1, v2�.
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A vector in standard position
Figure 11.4
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Vector Operations

Geometrically, the scalar multiple of a vector and a scalar is the vector that is
times as long as as shown in Figure 11.6. If is positive, then has the same

direction as If is negative, then has the opposite direction.
The sum of two vectors can be represented geometrically by positioning the 

vectors (without changing their magnitudes or directions) so that the initial point of one
coincides with the terminal point of the other, as shown in Figure 11.7. The vector

called the resultant vector, is the diagonal of a parallelogram having and as
its adjacent sides.

To find (1) move the initial point of (2) move the initial point of 
to the terminal point of or to the terminal point of 

Figure 11.7

Figure 11.8 shows the equivalence of the geometric and algebraic definitions of
vector addition and scalar multiplication, and presents (at far right) a geometric
interpretation of 

Vector addition Scalar multiplication Vector subtraction
Figure 11.8
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Definitions of Vector Addition and Scalar Multiplication

Let and be vectors and let be a scalar.

1. The vector sum of and is the vector 

2. The scalar multiple of and is the vector

3. The negative of is the vector 

4. The difference of and is 

u � v � u � ��v� � �u1 � v1, u2 � v2�.

vu

�v � ��1�v � ��v1, �v2�.

v

cu � �cu1, cu2�.

uc

u � v � �u1 � v1, u2 � v2�.vu

cv � �v1, v2�u � �u1, u2�

vvv 2v −v −1
2

3
2

The scalar multiplication of 
Figure 11.6
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WILLIAM ROWAN HAMILTON
(1805–1865)

Some of the earliest work with
vectors was done by the Irish
mathematician William Rowan
Hamilton. Hamilton spent many
years developing a system of 
vector-like quantities called 
quaternions. It wasn’t until the 
latter half of the nineteenth 
century that the Scottish physicist
James Maxwell (1831–1879)
restructured Hamilton’s 
quaternions in a form useful for
representing physical quantities
such as force, velocity, and 
acceleration.
See LarsonCalculus.com to read
more of this biography.

The Granger Collection, New York
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Vector Operations

For and find each of the vectors.

a. b. c.

Solution

a.

b.

c. Using you have

Vector addition and scalar multiplication share many properties of ordinary
arithmetic, as shown in the next theorem.

Proof The proof of the Associative Property of vector addition uses the Associative
Property of addition of real numbers.

The other properties can be proved in a similar manner. 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Any set of vectors (with an accompanying set of scalars) that satisfies the eight
properties listed in Theorem 11.1 is a vector space.* The eight properties are the 
vector space axioms. So, this theorem states that the set of vectors in the plane (with the
set of real numbers) forms a vector space.

 � u � �v � w�
 � �u1, u2� � �v1 � w1, v2 � w2�
 � �u1 � �v1 � w1�, u2 � �v2 � w2 ��
 � ��u1 � v1� � w1, �u2 � v2 � � w2�
 � �u1 � v1, u2 � v2� � �w1, w2�

 �u � v� � w � 	�u1, u2� � �v1, v2�
 � �w1, w2�

 � �4, 13�.
 � ��2 � 6, 5 � 8�

v � 2w � ��2, 5� � �6, 8�

2w � �6, 8�,
w � v � �w1 � v1, w2 � v2� � �3 � ��2�, 4 � 5� � �5, �1�

1
2v � �1

2��2�, 12�5�� � ��1, 52�

v � 2ww � v1
2v

w � �3, 4�,v � ��2, 5�
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THEOREM 11.1 Properties of Vector Operations

Let and be vectors in the plane, and let and be scalars.

1. Commutative Property

2. Associative Property

3. Additive Identity Property

4. Additive Inverse Property

5.

6. Distributive Property

7. Distributive Property

8. 1�u� � u, 0�u� � 0

c�u � v� � cu � cv

�c � d�u � cu � du

c�du� � �cd �u
u � ��u� � 0

u � 0 � u

�u � v� � w � u � �v � w�
u � v � v � u

dcwv,u,

* For more information about vector spaces, see Elementary Linear Algebra, Seventh
Edition, by Ron Larson (Boston, Massachusetts: Brooks/Cole, Cengage Learning, 2013).

EMMY NOETHER (1882–1935)

One person who contributed 
to our knowledge of axiomatic 
systems was the German 
mathematician Emmy Noether.
Noether is generally recognized
as the leading woman mathematician
in recent history.

FOR FURTHER INFORMATION
For more information on Emmy
Noether, see the article “Emmy
Noether, Greatest Woman
Mathematician” by Clark
Kimberling in Mathematics
Teacher. To view this article,
go to MathArticles.com.

The Granger Collection, NYC
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Proof Because it follows that

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

In many applications of vectors, it is useful to find a unit vector that has the same
direction as a given vector. The next theorem gives a procedure for doing this.

Proof Because is positive and you can conclude that has the
same direction as To see that note that

So, has length 1 and the same direction as 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

In Theorem 11.3, is called a unit vector in the direction of The process of
multiplying by to get a unit vector is called normalization of 

Finding a Unit Vector

Find a unit vector in the direction of and verify that it has length 1.

Solution From Theorem 11.3, the unit vector in the direction of is

This vector has length 1, because

�� �2
�29�

2

� � 5
�29�

2

�� 4
29

�
25
29

��29
29

� 1.

v
� v �

�
��2, 5�

���2�2 � �5�2
�

1
�29

 ��2, 5� �  �2
�29

, 
5

�29�.

v

v � ��2, 5�

v.1�� v �v
v.u

v.u

� 1.�
1

� v �
 � v �� � 1

� v �� � v � � u � � � � 1
� v � �v �

� u � � 1,v.
uu � �1�� v ��v,1�� v �

 � �c� � v � .

 � �c��v1
2 � v2

2

 � �c2�v1
2 � v2

2�

 � �c2v1
2 � c2v2

2

 � ��cv1�2 � �cv2�2

 � cv � � ��cv1, cv2��

cv � �cv1, cv2�,
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THEOREM 11.2 Length of a Scalar Multiple

Let be a vector and let be a scalar. Then

is the absolute value of c.�c��cv� � �c� �v�.

cv

THEOREM 11.3 Unit Vector in the Direction of 

If is a nonzero vector in the plane, then the vector

has length 1 and the same direction as v.

u �
v

�v�
�

1
�v�

v

v

v
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Generally, the length of the sum of two vectors is not equal to the sum of their
lengths. To see this, consider the vectors and as shown in Figure 11.9. With and

as two sides of a triangle, the length of the third side is and

Equality occurs only when the vectors and have the same direction. This result is
called the triangle inequality for vectors. (You are asked to prove this in Exercise 77,
Section 11.3.)

Standard Unit Vectors
The unit vectors and are called the standard unit vectors in the plane and
are denoted by

Standard unit vectors

as shown in Figure 11.10. These vectors can be used to represent any vector uniquely,
as follows.

The vector is called a linear combination of and The scalars and
are called the horizontal and vertical components of

Writing a Linear Combination of Unit Vectors

Let be the vector with initial point and terminal point and let
Write each vector as a linear combination of and 

a. b.

Solution

a.

b.

If is a unit vector and is the angle (measured counterclockwise) from the
positive axis to then the terminal point of lies on the unit circle, and you have

Unit vector

as shown in Figure 11.11. Moreover, it follows that any other nonzero vector making
an angle with the positive axis has the same direction as and you can write

Writing a Vector of Given Magnitude and Direction

The vector has a magnitude of 3 and makes an angle of with the positive
axis. Write as a linear combination of the unit vectors and 

Solution Because the angle between and the positive axis is you can
write

�
3�3

2
 i �

3
2

 j.� 3 cos 
�

6
 i � 3 sin 

�

6
 j v � � v � cos � i � � v � sin � j

� � ��6,x-v

j.ivx-
30� � ��6v

v � � v ��cos �, sin �� � � v � cos � i � � v � sin � j.

u,x-�
v

u � �cos �, sin �� � cos �i � sin �j

uu,x-
�u

� �12i � 19j� �6i � 16j � 6i � 3j w � 2u � 3v � 2��3i � 8j� � 3�2i � j�
� ��3, 8� � �3i � 8j� ��1 � 2, 3 � ��5�� u � �q1 � p1, q2 � p2�

w � 2u � 3vu

j.iv � 2i � j.
��1, 3�,�2, �5�u

v.v2

v1j.iv � v1 i � v2 j

v � �v1, v2� � �v1, 0� � �0, v2� � v1�1, 0� � v2�0, 1� � v1 i � v2 j

     i � �1, 0�    and    j � �0, 1�     

�0, 1��1, 0�

vu

� u � v � � � u � � � v �.

�u � v �,v
uvu
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Vectors have many applications in physics and engineering. One example is force.
A vector can be used to represent force, because force has both magnitude and 
direction. If two or more forces are acting on an object, then the resultant force on the
object is the vector sum of the vector forces.

Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12. Each boat is
exerting a force of 400 pounds. What is the resultant force on the ocean liner?

Solution Using Figure 11.12, you can represent the forces exerted by the first and
second tugboats as

The resultant force on the ocean liner is

So, the resultant force on the ocean liner is approximately 752 pounds in the direction
of the positive axis.

In surveying and navigation, a bearing is a direction that measures the acute angle
that a path or line of sight makes with a fixed north-south line. In air navigation,
bearings are measured in degrees clockwise from north.

Finding a Velocity

See LarsonCalculus.com for an interactive version of this type of example.

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane 
is traveling at a speed of 500 miles per hour with a bearing of as shown in 
Figure 11.13(a). As the airplane reaches a certain point, it encounters wind with a 
velocity of 70 miles per hour in the direction N E ( east of north), as shown in
Figure 11.13(b). What are the resultant speed and direction of the airplane?

Solution Using Figure 11.13(a), represent the velocity of the airplane (alone) as

The velocity of the wind is represented by the vector

The resultant velocity of the airplane (in the wind) is

To find the resultant speed and direction, write Because
you can write

The new speed of the airplane, as altered by the wind, is approximately 522.5 miles per
hour in a path that makes an angle of with the positive axis.x-112.6�

v � 522.5��200.5
522.5

 i �
482.5
522.5

 j� � 522.5 	cos�112.6��i � sin�112.6��j
.

� v � � ���200.5�2 � �482.5�2 � 522.5,
v � � v ��cos � i � sin � j�.

 � �200.5 i � 482.5 j.

 � 500 cos�120��i � 500 sin�120��j � 70 cos�45��i � 70 sin�45��j

 v � v1 � v2

v2 � 70 cos�45��i � 70 sin�45��j.

v1 � 500 cos�120��i � 500 sin�120��j.

45�45�

330�,

x-

 � 752i.

 � 800 cos�20��i

 � 	400 cos�20��i � 400 sin�20��j
 � 	400 cos�20��i � 400 sin�20��j

 F � F1 � F2

� 400 cos�20��i � 400 sin�20��j. F2 � 400�cos��20��, sin��20���
� 400 cos�20��i � 400 sin�20��j F1 � 400�cos 20�, sin 20��
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The resultant force on the ocean liner
that is exerted by the two tugboats
Figure 11.12
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11.1 Vectors in the Plane 755

Sketching a Vector In Exercises 1–4, (a) find the component
form of the vector and (b) sketch the vector with its initial
point at the origin.

1. 2.

3. 4.

Equivalent Vectors In Exercises 5–8, find the vectors 
and whose initial and terminal points are given. Show that
and are equivalent.

5. 6.

7. 8.

Writing a Vector in Different Forms In Exercises 9–16,
the initial and terminal points of a vector are given. 
(a) Sketch the given directed line segment, (b) write  the vector
in component form, (c) write the vector as the linear 
combination of the standard unit vectors and and 
(d) sketch the vector with its initial point at the origin.

Terminal Terminal
Initial Point Point Initial Point Point

9. 10.

11. 12.

13. 14.

15. 16.

Sketching Scalar Multiples In Exercises 17 and 18,
sketch each scalar multiple of 

17.

(a) (b) (c) (d)

18.

(a) (b) (c) (d)

Using Vector Operations In Exercises 19 and 20, find 
(a) (b) (c) and (d) 

19. 20.

Sketching a Vector In Exercises 21–26, use the figure to
sketch a graph of the vector. To print an enlarged copy of the
graph, go to MathGraphs.com.

21.

22.

23.

24.

25.

26.

Finding a Terminal Point In Exercises 27 and 28, the 
vector and its initial point are given. Find the terminal point.

27. Initial point:

28. Initial point:

Finding a Magnitude of a Vector In Exercises 29–34,
find the magnitude of 

29. 30.

31. 32.

33. 34.

Finding a Unit Vector In Exercises 35–38, find the unit
vector in the direction of and verify that it has length 1.

35. 36.

37. 38.

Finding Magnitudes In Exercises 39–42, find the following.

(a) (b) (c)

(d) (e) (f)

39. 40.

41. 42.

Using the Triangle Inequality In Exercises 43 and 44,
sketch a graph of and Then demonstrate the 
triangle inequality using the vectors and 

43. 44.

Finding a Vector In Exercises 45–48, find the vector with
the given magnitude and the same direction as 

Magnitude Direction

45.

46.

47.

48. u � ��3, 3�� v � � 2

u � ��1, 2�� v � � 5

u � �1, 1�� v � � 4

u � �0, 3�� v � � 6

u.
v

v � �1, �2�u � ��3, 2�,v � �5, 4�u � �2, 1�,

v.u
u � v.v,u,

v � �5, 5�u � �2, �4�,v � �2, 3�u � �1, 12�,

v � �3, �3�u � �0, 1�,v � ��1, 2�u � �1, �1�,

� u � v
� u � v � ��  

v
� v �

 ��  
u

� u �
 �

� u � v �� v �� u �

v � ��6.2, 3.4�v � �3
2, 52�

v � ��5, 15�v � �3, 12�

v

v � �10i � 3jv � 6i � 5j

v � �12, �5�v � �4, 3�

v � �3iv � 7i

v.

�5, 3�v � �4, �9�;

�4, 2�v � ��1, 3�;

v

u � 2v

u � v

1
2v

�v

2u

x

u v

y�u

v � �8, 25�u � ��3, �8�,v � �2, �5�u � �4, 9�,

2u � 5v.v � u,3v,2
3u,

�6v0v�
1
2v4v

v � ��2, 3�

2
3v7

2v�3v2v

v � �3, 5�

v.

�0.84, 1.25��0.12, 0.60��1
2, 3��3

2, 43�
��3, �1��7, �1��6, 6��6, 2�
��5, �1��0, �4��6, �1��8, 3�
�3, 6��4, �6��5, 5��2, 0�

j,i

v

�10, 13�, �25, 10�v:�3, 10�, �9, 5�v:

��4, �1�, �11, �4�u:�0, 3�, �6, �2�u:

�2, �1�, �7, 7�v:�1, 4�, �3, 8�v:

��4, 0�, �1, 8�u:�3, 2�, �5, 6�u:

vu
vu

x
−1−2 2

2

4

1

1

(−1, 3)

(2, 1)

y

v
x

−6

−4 −2 2

2

4

(2, −3)(−4, −3)

y

v

x
1

1

−2
−1 2

2
3

4

4

5 6

(3, 4)

(3, −2)

y

v

x
1

1

−1 2

2

3

3

4

4

5

(1, 2)

(5, 4)
y

v

v

11.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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756 Chapter 11 Vectors and the Geometry of Space

Finding a Vector In Exercises 49–52, find the component
form of given its magnitude and the angle it makes with the
positive -axis.

49. 50.

51. 52.

Finding a Vector In Exercises 53–56, find the component
form of given the lengths of and and the angles that

and make with the positive -axis.

53. 54.

55. 56.

59. Using a Parallelogram Three vertices of a parallelogram
are Find the three possible fourth 
vertices (see figure).

Finding Values In Exercises 61–66, find and such that
where and 

61. 62.

63. 64.

65. 66.

Finding Unit Vectors In Exercises 67–72, find a unit vector
(a) parallel to and (b) perpendicular to the graph of at the
given point. Then sketch the graph of and sketch the vectors
at the given point.

67. 68.

69. 70.

71.

72.

Finding a Vector In Exercises 73 and 74, find the 
component form of v given the magnitudes of and and
the angles that and make with the positive -axis.

73. 74.

75. Resultant Force Forces with magnitudes of 500 pounds
and 200 pounds act on a machine part at angles of and

respectively, with the -axis (see figure). Find the 
direction and magnitude of the resultant force.

Figure for 75 Figure for 76

76. Numerical and Graphical Analysis Forces with 
magnitudes of 180 newtons and 275 newtons act on a hook
(see figure). The angle between the two forces is degrees.

(a) When find the direction and magnitude of the
resultant force.

(b) Write the magnitude and direction of the resultant
force as functions of where 

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the two functions and 

(e) Explain why one of the functions decreases for increasing
values of whereas the other does not.�,

	.M

0� � � � 180�.�,
	M

� � 30�,

�

x
275 N

180 N

θ

y

30°

−45°

500 lb

200 lb

x

x�45�,
30�

� u � v � � 6, � � 120�� u � v � � �2, � � 90�

� u � � 4, � � 30�� u � � 1, � � 45�

xu � vu
u � vu

��

4
, 1�f �x� � tan x,

�3, 4�f �x� � �25 � x2,

��2, �8�f �x� � x3,�1, 1�f �x� � x3,

�1, 4�f �x� � �x2 � 5,�3, 9�f �x� � x2,

f
f

v � ��1, 7�v � �1, 1�

v � �3, 3�v � �3, 0�

v � �0, 3�v � �2, 1�

w � �1, �1�.u � �1, 2�v � au � bw,
ba

x
1

1

2

2

3

3

4

4

5

5

6

6

7 8 9 10−4 −3−2−1

(1, 2)
(3, 1)

(8, 4)

y

�1, 2�, �3, 1�, and �8, 4�.

� v � � 5,  �v � 0.5� v � � 1,  �v � 2

� u � � 5,  �u � �0.5� u � � 2,  �u � 4

� v � � 2,  �v � 60�� v � � 3,  �v � 45�

� u � � 4,  �u � 0�� u � � 1,  �u � 0�

xvu
vuu � v

� � 3.5�� v � � 4,� � 150�� v � � 2,

� � 120�� v � � 5,� � 0�� v � � 3,

x
v

WRITING ABOUT CONCEPTS
57. Scalar and Vector In your own words, state the 

difference between a scalar and a vector. Give examples 
of each.

58. Scalar or Vector Identify the quantity as a scalar or as
a vector. Explain your reasoning.

(a) The muzzle velocity of a gun

(b) The price of a company’s stock

(c) The air temperature in a room

(d) The weight of a car

60. HOW DO YOU SEE IT? Use the figure to
determine whether each statement is true or false.
Justify your answer.

(a) (b)

(c) (d)

(e) (f ) u � v � �2�b � t�a � d � 0

v � w � �sa � u � c

c � sa � �d

a
c s

d w

b

u

t

v

� 0� 30� 60� 90� 120� 150� 180�

M
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11.1 Vectors in the Plane 757

77. Resultant Force Three forces with magnitudes of 
75 pounds, 100 pounds, and 125 pounds act on an object at
angles of and respectively, with the positive 

axis. Find the direction and magnitude of the resultant force.

78. Resultant Force Three forces with magnitudes of 
400 newtons, 280 newtons, and 350 newtons act on an object
at angles of and respectively, with the 
positive axis. Find the direction and magnitude of the 
resultant force.

79. Think About It Consider two forces of equal magnitude
acting on a point.

(a) When the magnitude of the resultant is the sum of the 
magnitudes of the two forces, make a conjecture about the
angle between the forces.

(b) When the resultant of the forces is 0, make a conjecture
about the angle between the forces.

(c) Can the magnitude of the resultant be greater than the sum
of the magnitudes of the two forces? Explain.

80. Cable Tension Determine the tension in each cable 
supporting the given load for each figure.

(a) (b)

81. Projectile Motion A gun with a muzzle velocity of 
1200 feet per second is fired at an angle of above the 
horizontal. Find the vertical and horizontal components of the
velocity.

82. Shared Load To carry a 100-pound cylindrical weight,
two workers lift on the ends of short ropes tied to an eyelet on
the top center of the cylinder. One rope makes a angle
away from the vertical and the other makes a angle 
(see figure).

(a) Find each rope’s tension when the resultant force is vertical.

(b) Find the vertical component of each worker’s force.

Figure for 82 Figure for 83

83. Navigation A plane is flying with a bearing of Its
speed with respect to the air is 900 kilometers per hour. The
wind at the plane’s altitude is from the southwest at 
100 kilometers per hour (see figure). What is the true direction
of the plane, and what is its speed with respect to the ground?

True or False? In Exercises 85–90, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

85. If and have the same magnitude and direction, then and
are equivalent.

86. If is a unit vector in the direction of then 

87. If is a unit vector, then 

88. If then 

89. If then 

90. If and have the same magnitude but opposite directions,
then 

91. Proof Prove that

and

are unit vectors for any angle 

92. Geometry Using vectors, prove that the line segment 
joining the midpoints of two sides of a triangle is parallel to,
and one-half the length of, the third side.

93. Geometry Using vectors, prove that the diagonals of a
parallelogram bisect each other.

94. Proof Prove that the vector bisects the
angle between and .

95. Using a Vector Consider the vector Describe
the set of all points such that �u � � 5.�x, y�

u � �x, y�.

vu
w � � u �v � � v �u

�.

v � �sin ��i � �cos ��ju � �cos ��i � �sin ��j

u � v � 0.
vu

� a i � bj � � �2a.a � b,

a � �b.v � ai � bj � 0,

a2 � b2 � 1.u � ai � bj

v � � v � u.v,u

v
uvu

302�.

45°32°
900 km/hr

100 km/hr

S

EW

N

100 lb

20° 30°

30�
20�

6�

A B

C

5000 lb

24 in.

10 in. 20 in.
50° 30°A B

C

3000 lb

x-
135�,45�,�30�,

x-
120�,45�,30�,

A plane flies at a 
constant groundspeed 
of 400 miles per hour 
due east and encounters 
a 50-mile-per-hour wind
from the northwest. Find
the airspeed and compass
direction that will allow
the plane to maintain its
groundspeed and eastward
direction.

84. Navigation

PUTNAM EXAM CHALLENGE
96. A coast artillery gun can fire at any angle of elevation

between and in a fixed vertical plane. If air 
resistance is neglected and the muzzle velocity is constant

determine the set of points in the plane and
above the horizontal which can be hit.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

H�� v0�,

90�0�

Mikael Damkier/Shutterstock.com
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758 Chapter 11 Vectors and the Geometry of Space

11.2 Space Coordinates and Vectors in Space

Understand the three-dimensional rectangular coordinate system.
Analyze vectors in space.

Coordinates in Space
Up to this point in the text, you have been primarily concerned with the 
two-dimensional coordinate system. Much of the remaining part of your study of
calculus will involve the three-dimensional coordinate system.

Before extending the concept of a vector to three dimensions, you must be able to
identify points in the three-dimensional coordinate system. You can construct this
system by passing a axis perpendicular to both the and axes at the origin, as
shown in Figure 11.14. Taken as pairs, the axes determine three coordinate planes: the

-plane, the -plane, and the -plane. These three coordinate planes separate 
three-space into eight octants. The first octant is the one for which all three coordinates
are positive. In this three-dimensional system, a point in space is determined by an
ordered triple where and are as follows.

directed distance from plane to 

directed distance from plane to 

directed distance from plane to 

Several points are shown in Figure 11.15.

Points in the three-dimensional coordinate system are 
represented by ordered triples.
Figure 11.15

A three-dimensional coordinate system 
can have either a right-handed or a left-
handed orientation. To determine the 
orientation of a system, imagine that you 
are standing at the origin, with your arms 
pointing in the direction of the positive 

and axes, and with the axis pointing 
up, as shown in Figure 11.16. The system is
right-handed or left-handed depending on 
which hand points along the axis. In this 
text, you will work exclusively with the 
right-handed system.

x-

z-y-x-

x

y
8

−2−4
−8

4
3

5
6

−3
−4

−5
−6

1

6

5

4

3

2

(2, −5, 3)

(−2, 5, 4)

(3, 3, −2)

(1, 6, 0)

z

Pxy-z �

Pxz-y �

Pyz-x �

zy,x,�x, y, z�,
P

yzxzxy

y-x-z-

x

y

z

y

x

z

REMARK The three-
dimensional rotatable graphs
that are available at
LarsonCalculus.com can help
you visualize points or objects
in a three-dimensional 
coordinate system.

y

yz-planexz-plane

xy-planex

z

The three-dimensional coordinate 
system
Figure 11.14

Right-handed Left-handed
system system
Figure 11.16
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Many of the formulas established for the two-dimensional coordinate system can
be extended to three dimensions. For example, to find the distance between two points
in space, you can use the Pythagorean Theorem twice, as shown in Figure 11.17. By
doing this, you will obtain the formula for the distance between the points 
and 

Distance Formula

Finding the Distance Between Two Points in Space

Find the distance between the points and 

Solution

Distance Formula

A sphere with center at and radius is defined to be the set of all points
such that the distance between and is You can use the

Distance Formula to find the standard equation of a sphere of radius centered at
If is an arbitrary point on the sphere, then the equation of the sphere is

Equation of sphere

as shown in Figure 11.18. Moreover, the midpoint of the line segment joining the points
and has coordinates

Midpoint Formula

Finding the Equation of a Sphere

Find the standard equation of the sphere that has the points

and

as endpoints of a diameter.

Solution Using the Midpoint Formula, the center of the sphere is

Midpoint Formula

By the Distance Formula, the radius is

Therefore, the standard equation of the sphere is

Equation of sphere�x �
5
2�

2

� � y � 1�2 � z2 �
97
4

.

r ���0 �
5
2�

2

� �4 � 1�2 � ��3 � 0�2 ��97
4

�
�97

2
.

�5 � 0
2

, 
�2 � 4

2
, 

3 � 3
2 � � �5

2
, 1, 0�.

�0, 4, �3��5, �2, 3�

     �x1 � x2

2
, 

y1 � y2

2
, 

z1 � z2

2 �.     

�x2, y2, z2��x1, y1, z1�

     �x � x0�2 � �y � y0�2 � �z � z0�2 � r2     

�x, y, z��x0, y0, z0�.
r,

r.�x0, y0, z0��x, y, z��x, y, z�
r�x0, y0, z0�

 � 3�3

 � �27

 � �1 � 1 � 25

 d � ��1 � 2�2 � �0 � 1�2 � ��2 � 3�2

�1, 0, �2�.�2, �1, 3�

     d � ��x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2     

�x2, y2, z2�.
�x1, y1, z1�

11.2 Space Coordinates and Vectors in Space 759

y
x

Q

P

d

(x1, y1, z1) (x2, y2, z1)

(x2, y2, z2)

⏐z2 − z1⏐

(x2 − x1)2 + (y2 − y1)2

z

The distance between two points in
space
Figure 11.17

(x0, y0, z0)

x

y

(x, y, z)
r

z

Figure 11.18
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Vectors in Space
In space, vectors are denoted by ordered triples The zero vector is
denoted by Using the unit vectors

and

the standard unit vector notation for is

as shown in Figure 11.19. If is represented by the directed line segment from
to as shown in Figure 11.20, then the component form of 

is written by subtracting the coordinates of the initial point from the coordinates of the
terminal point, as follows.

Note that the properties of vector operations listed in Theorem 11.1 (see Section
11.1) are also valid for vectors in space.

Finding the Component Form of a Vector in Space

See LarsonCalculus.com for an interactive version of this type of example.

Find the component form and magnitude of the vector having initial point 
and terminal point Then find a unit vector in the direction of 

Solution The component form of is

which implies that its magnitude is

The unit vector in the direction of is

 � � 2
�62

, 
�7
�62

, 
3

�62�.

 �
1

�62
	2, �7, 3


 u �
v

�v �

v

�v � � �22 � ��7�2 � 32 � �62.

� 	2, �7, 3
� 	0 � ��2�, �4 � 3, 4 � 1
 v � 	q1 � p1, q2 � p2, q3 � p3


v

v.�0, �4, 4�.
��2, 3, 1�v

v � 	v1, v2, v3
 � 	q1 � p1, q2 � p2, q3 � p3


vQ�q1, q2, q3�,P� p1, p2, p3�
v

v � v1i � v2 j � v3k

v

k � 	0, 0, 1
j � 	0, 1, 0
,i � 	1, 0, 0
,

0 � 	0, 0, 0
.
v � 	v1, v2, v3
.

760 Chapter 11 Vectors and the Geometry of Space

Vectors in Space

Let and be vectors in space and let be a scalar.

1. Equality of Vectors: if and only if and 

2. Component Form: If is represented by the directed line segment from
to then

3. Length:

4. Unit Vector in the Direction of :

5. Vector Addition:

6. Scalar Multiplication: cv � 	cv1, cv2, cv3

v � u � 	v1 � u1, v2 � u2, v3 � u3


v � 0
v

�v �
� � 1

�v �� 	v1, v2, v3
,v

�v � � �v1
2 � v2

2 � v3
2

v � 	v1, v2, v3
 � 	q1 � p1, q2 � p2, q3 � p3
.

Q�q1, q2, q3�,P� p1, p2, p3�
v

u3 � v3.u1 � v1, u2 � v2,u � v

cv � 	v1, v2, v3
u � 	u1, u2, u3


x

y

〈0, 1, 0〉

〈1, 0, 0〉

〈0, 0, 1〉

〈v1, v2, v3〉

i
j

k

v

z

The standard unit vectors in space
Figure 11.19

x

y

Q(q1, q2, q3)

P(p1, p2, p3) v

v = 〈q1 − p1, q2 − p2, q3 − p3〉

z

Figure 11.20
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Recall from the definition of scalar multiplication that positive scalar multiples of
a nonzero vector have the same direction as whereas negative multiples have the
direction opposite of In general, two nonzero vectors and are parallel when there
is some scalar such that For example, in Figure11.21, the vectors and 
are parallel because

and

Parallel Vectors

Vector has initial point and terminal point Which of the
following vectors is parallel to 

a.

b.

Solution Begin by writing in component form.

a. Because you can conclude that is
parallel to 

b. In this case, you want to find a scalar such that

To find equate the corresponding components and solve as shown.

Note that for the first two components and for the third component.
This means that the equation has no solution, and the
vectors are not parallel.

Using Vectors to Determine Collinear Points

Determine whether the points

and

are collinear.

Solution The component forms of and are

and

These two vectors have a common initial point. So, and lie on the same line if
and only if and are parallel—which they are because as shown
in Figure 11.22.

PR
\

� 3 PQ
\

,PR
\

PQ
\

RQ,P,

PR
\

� 	4 � 1, 7 � ��2�, �6 � 3
 � 	3, 9, �9
.

PQ
\

� 	2 � 1, 1 � ��2�, 0 � 3
 � 	1, 3, �3


PR
\

PQ
\

R�4, 7, �6�Q�2, 1, 0�,P�1, �2, 3�,

	12, �16, 4
 � c	�6, 8, 2

c � 2c � �2

c �   2 4 �  2c

c � �2�16 �  8c

c � �2 12 � �6c

c,

	12, �16, 4
 � c	�6, 8, 2
.

c

w.
uu � 	3, �4, �1
 � �

1
2	�6, 8, 2
 � �

1
2 w,

w � 	�4 � 2, 7 � ��1�, 5 � 3
 � 	�6, 8, 2


w

v � 	12, �16, 4


u � 	3, �4, �1


w?
��4, 7, 5�.�2, �1, 3�w

w � �v.u � 2v

wv,u,u � cv.c
vuv.

v,v
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Definition of Parallel Vectors

Two nonzero vectors and are parallel when there is some scalar such that
u � cv.

cvux

u = 2v
w = −v

w

u

v

y

Parallel vectors
Figure 11.21

x y

2
4

6
8

6
8

4

2

(1, −2, 3)

(2, 1, 0)

(4, 7, −6)

P

Q

R

z

The points and lie on the same
line.
Figure 11.22

RQ,P,
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Standard Unit Vector Notation

a. Write the vector in component form.

b. Find the terminal point of the vector given that the initial point is

c. Find the magnitude of the vector Then find a unit vector in the
direction of 

Solution

a. Because is missing, its component is 0 and

b. You need to find such that 

This implies that and The solution 
of these three equations is and Therefore,

c. Note that and So, the magnitude of is

The unit vector in the direction of is 

Measuring Force

A television camera weighing 120 pounds is supported by a tripod, as shown in 
Figure 11.23. Represent the force exerted on each leg of the tripod as a vector. 

Solution Let the vectors and represent the forces exerted on the three legs.
From Figure 11.23, you can determine the directions of and to be as follows.

Because each leg has the same length, and the total force is distributed equally among
the three legs, you know that So, there exists a constant such that

and

Let the total force exerted by the object be given by Then, using the
fact that 

you can conclude that and all have a vertical component of This implies
that and Therefore, the forces exerted on the legs can be 
represented by

and 

F3 � 	�5�3, 5, �40
.

F2 � 	5�3, 5, �40
,

F1 � 	0, �10, �40
,

c � 10.c��4� � �40
�40.F3F1, F2,

F � F1 � F2 � F3

F � 	0, 0, �120
.

F3 � c��
�3
2

, 
1
2

, �4�.F2 � c��3
2

, 
1
2

, �4�,F1 � c	0, �1, �4
,

c�F1 � � �F2 � � �F3 �.

PQ
\

3 � ��
�3
2

� 0, 
1
2

� 0, 0 � 4� � ��
�3
2

, 
1
2

, �4�
PQ

\

2 � ��3
2

� 0, 
1
2

� 0, 0 � 4� � ��3
2

, 
1
2

, �4�
PQ

\

1 � 	0 � 0, �1 � 0, 0 � 4
 � 	0, �1, �4


F3F1, F2,
F3F1, F2,

1
7��6i � 2j � 3k� � �

6
7i �

2
7j �

3
7k.

v

�v� � ���6�2 � 22 � ��3�2 � �49 � 7.

vv3 � �3.v2 � 2,v1 � �6,

Q is �5, 2, 8�.q3 � 8.q2 � 2,q1 � 5,
q3 � 5 � 3.q2 � 3 � �1,q1 � ��2� � 7,

v � PQ
\

� 7i � j � 3k.

Q�q1, q2, q3�

v � 4i � 5k � 	4, 0, �5
.

j

v.
v � �6i � 2j � 3k.

P��2, 3, 5�.
v � 7i � j � 3k,

v � 4i � 5k
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x

y

P (0, 0, 4)

Q1 (0, −1, 0)

Q2
3

2
1
2

, )) , 0

z

Q3
3

2
1
2

, )) , 0−

Figure 11.23
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11.2 Space Coordinates and Vectors in Space 763

Plotting Points In Exercises 1–4, plot the points in the
same three-dimensional coordinate system.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

Finding Coordinates of a Point In Exercises 5–8, find
the coordinates of the point.

5. The point is located three units behind the plane, four units
to the right of the plane, and five units above the plane.

6. The point is located seven units in front of the plane, two
units to the left of the plane, and one unit below the 

plane.

7. The point is located on the axis, 12 units in front of the 
plane.

8. The point is located in the plane, three units to the right of
the plane, and two units above the plane.

9. Think About It What is the coordinate of any point in
the plane?

10. Think About It What is the coordinate of any point in
the plane?

Using the Three-Dimensional Coordinate System In
Exercises 11–22, determine the location of a point that
satisfies the condition(s).

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Finding the Distance Between Two Points in Space

In Exercises 23–26, find the distance between the points.

23. 24.

25. 26.

Classifying a Triangle In Exercises 27–30, find the lengths
of the sides of the triangle with the indicated vertices, and
determine whether the triangle is a right triangle, an isosceles
triangle, or neither.

27.

28.

29.

30.

31. Think About It The triangle in Exercise 27 is translated 
five units upward along the axis. Determine the coordinates
of the translated triangle.

32. Think About It The triangle in Exercise 28 is translated 
three units to the right along the axis. Determine the 
coordinates of the translated triangle.

Finding the Midpoint In Exercises 33–36, find the 
coordinates of the midpoint of the line segment joining the
points.

33. 34.

35. 36.

Finding the Equation of a Sphere In Exercises 37–40,
find the standard equation of the sphere.

37. Center: 38. Center:

Radius: 2 Radius: 5

39. Endpoints of a diameter:

40. Center: tangent to the plane

Finding the Equation of a Sphere In Exercises 41–44,
complete the square to write the equation of the sphere in 
standard form. Find the center and radius.

41.

42.

43.

44.

Finding the Component Form of a Vector in Space In
Exercises 45–48, (a) find the component form of the vector v,
(b) write the vector using standard unit vector notation, and 
(c) sketch the vector with its initial point at the origin.

45. 46.

47. 48.

x

y

(2, 3, 0)

(2, 3, 4)

6
4

2
64

6

4

2

z

v

x

y

(0, 3, 3)

(3, 3, 0)6
4

2
64

6

4

2

z

v

x

y

(0, 5, 1)(4, 0, 3)

6
4 642

6

4

2

z

v

x

y

(2, 4, 3)

(4, 2, 1)

6

6

6

4

2

z

v

4x2 � 4y 2 � 4z2 � 24x � 4y � 8z � 23 � 0

9x2 � 9y 2 � 9z2 � 6x � 18y � 1 � 0

x2 � y2 � z2 � 9x � 2y � 10z � 19 � 0

x2 � y 2 � z2 � 2x � 6y � 8z � 1 � 0

yz-��3, 2, 4�,
�2, 0, 0�, �0, 6, 0�

�4, �1, 1��0, 2, 5�

�4, 0, �6�, �8, 8, 20��5, �9, 7�, ��2, 3, 3�
�7, 2, 2�, ��5, �2, �3��3, 4, 6�, �1, 8, 0�

y-

z-

�4, �1, �1�, �2, 0, �4�, �3, 5, �1�
��1, 0, �2�, ��1, 5, 2�, ��3, �1, 1�
�3, 4, 1�, �0, 6, 2�, �3, 5, 6�
�0, 0, 4�, �2, 6, 7�, �6, 4, �8�

�4, �5, 6��2, 2, 3�,�6, �2, �2��1, �2, 4�,
�2, �5, �2���2, 3, 2�,��4, 2, 7��0, 0, 0�,

xyz > 0xyz < 0

z � 4xy < 0,z � �3xy > 0,

�x� > 4�y� � 3

x > 0y < 0

z � �
5
2x � �3

y � 2z � 6

x, y, z�

yz-
x-

xy-
z-

xy-xz-
yz-

yz-
x-

xy-
xz-

yz-

xy-xz-
yz-

�4, 0, 5��0, 4, �5�
�5, �2, �2��5, �2, 2�
�3

2, 4, �2��3, �2, 5�
��1, 2, 1��2, 1, 3�

11.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

9781285774770_1102.qxp  8/27/13  9:47 AM  Page 763

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



764 Chapter 11 Vectors and the Geometry of Space

Finding the Component Form of a Vector in Space In
Exercises 49 and 50, find the component form and magnitude
of the vector with the given initial and terminal points. Then
find a unit vector in the direction of 

49. Initial point: 50. Initial point:

Terminal point: Terminal point:

Writing a Vector in Different Forms In Exercises 51 and
52, the initial and terminal points of a vector v are given. 
(a) Sketch the directed line segment, (b) find the component
form of the vector, (c) write the vector using standard unit 
vector notation, and (d) sketch the vector with its initial point
at the origin.

51. Initial point: 52. Initial point:

Terminal point: Terminal point:

Finding a Terminal Point In Exercises 53 and 54, the 
vector and its initial point are given. Find the terminal point.

53. 54.

Initial point: Initial point:

Finding Scalar Multiples In Exercises 55 and 56, find
each scalar multiple of and sketch its graph.

55. 56.

(a) (b) (a) (b)

(c) (d) (c) (d)

Finding a Vector In Exercises 57–60, find the vector 
given that and 

57. 58.

59. 60.

Parallel Vectors In Exercises 61–64, determine which of the
vectors is (are) parallel to Use a graphing utility to 
confirm your results.

61. 62.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

63. has initial point and terminal point 

(a) (b)

64. has initial point and terminal point 

(a) (b)

Using Vectors to Determine Collinear Points In
Exercises 65–68, use vectors to determine whether the points
are collinear.

65.

66.

67.

68.

Verifying a Parallelogram In Exercises 69 and 70, use 
vectors to show that the points form the vertices of a 
parallelogram.

69.

70.

Finding the Magnitude In Exercises 71–76, find the 
magnitude of 

71. 72.

73. 74.

75. 76.

Finding Unit Vectors In Exercises 77–80, find a unit vector
(a) in the direction of v and (b) in the direction opposite of v.

77. 78.

79. 80.

81. Using Vectors Consider the two nonzero vectors and 
and let and be real numbers. Describe the geometric figure
generated by the terminal points of the three vectors 

and 

Finding a Vector In Exercises 83–86, find the vector with
the given magnitude and the same direction as 

Magnitude Direction

83.

84.

85.

86.

Sketching a Vector In Exercises 87 and 88, sketch the 
vector and write its component form.

87. lies in the plane, has magnitude 2, and makes an angle of
with the positive axis.y-30�

yz-v

v

u � 	�4, 6, 2
�v� � 7

u � 	2, �2, 1
�v� �
3
2

u � 	1, 1, 1
�v� � 3

u � 	0, 3, 3
�v� � 10

u.
v

su � tv.u � tv,
tv,

ts
v,u

v � 5i � 3j � kv � 4i � 5j � 3k

v � 	6, 0, 8
v � 	2, �1, 2


v � �4i � 3j � 7kv � i � 2j � 3k

v � 2i � 5j � kv � 3j � 5k

v � 	1, 0, 3
v � 	0, 0, 0


v.

�1, 1, 3�, �9, �1, �2�, �11, 2, �9�, �3, 4, �4�
�2, 9, 1�, �3, 11, 4�, �0, 10, 2�, �1, 12, 5�

�0, 0, 0�, �1, 3, �2�, �2, �6, 4�

�1, 2, 4�, �2, 5, 0�, �0, 1, 5�
�4, �2, 7�, ��2, 0, 3�, �7, �3, 9�
�0, �2, �5�, �3, 4, 4�, �2, 2, 1�

	14, 16, �6
	7, 6, 2


��2, �4, 4�.�5, 4, 1�z

4j � 2k�6i � 8j � 4k

��2, 3, 5�.�1, �1, 3�z

3
4i � j �

9
8k	1, �4, 2


12i � 9k	6, 4, 10


�i �
4
3j �

3
2k	2, 43, �10

3 

6i � 4j � 9k	�6, �4, 10


z �
1
2i �

2
3j �

3
4kz � 	3, 2, �5


z.

2u � v � w � 3z � 02z � 3u � w

z � 5u � 3v �
1
2wz � u � v � 2w

w � 	4, 0, �4
.v � 	2, 2, �1
,u � 	1, 2, 3
,
z,

5
2v1

2v0v3
2v

2v�v�v2v

v � 	2, �2, 1
v � 	1, 2, 2


v

�0, 2, 52��0, 6, 2�
v � 	1, �2

3, 12
v � 	3, �5, 6


v

��4, 3, 7��3, 3, 4�
�2, �1, �2���1, 2, 3�

�2, 4, �2��4, 1, 6�
�1, �2, 4��3, 2, 0�

v.
v

82. HOW DO YOU SEE IT? Determine for
each figure. Then find the component form of the
vector from the point on the -axis to the point

(a) (b)

x 

y 

z 

(0, 4, 0) 

(x, y, z) 

(4, 0, 0) 

(4, 0, 8) 

x

y
(0, 3, 0)

(0, 3, 3)

(3, 0, 0)

z

(x, y, z)

�x, y, z�.
x

�x, y, z�
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11.2 Space Coordinates and Vectors in Space 765

88. lies in the plane, has magnitude 5, and makes an angle
of with the positive axis.

Finding a Point Using Vectors In Exercises 89 and 90,
use vectors to find the point that lies two-thirds of the way from

to 

89.

90.

91. Using Vectors Let and 

(a) Sketch and 

(b) If show that and must both be zero.

(c) Find and such that 

(d) Show that no choice of and yields 

92. Writing The initial and terminal points of the vector are
and Describe the set of all points 

such that 

97. Using a Triangle and Vectors Let and be 
vertices of a triangle. Find 

98. Using Vectors Let and 
Describe the set of all points such that 

99. Diagonal of a Cube Find the component form of the
unit vector in the direction of the diagonal of the cube
shown in the figure.

Figure for 99 Figure for 100

100. Tower Guy Wire The guy wire supporting a 100-foot
tower has a tension of 550 pounds. Using the distances shown
in the figure, write the component form of the vector 
representing the tension in the wire.

102. Think About It Suppose the length of each cable in
Exercise 101 has a fixed length and the radius of each
disc is inches. Make a conjecture about the limit 
and give a reason for your answer.

103. Load Supports Find the tension in each of the 
supporting cables in the figure when the weight of the crate
is 500 newtons.

Figure for 103 Figure for 104

104. Construction A precast concrete wall is temporarily
kept in its vertical position by ropes (see figure). Find the
total force exerted on the pin at position The tensions in 
and are 420 pounds and 650 pounds.

105. Geometry Write an equation whose graph consists of the
set of points that are twice as far from 
as from Describe the geometric figure represented
by the equation.

B�1, 2, 0�.
A�0, �1, 1�P�x, y, z�

AC
ABA.

6 ft

A

C

D

10 ft

B

18 ft

8 ft

x
y

z

A

B

C

D

60 cm

70 cm45 cm

65 cm

115 cm

lim
r0→a� Tr0

L � a,

F

100

z

−50

75
x

yy

x

v

⏐⏐ v⏐⏐ = 1

z

v

�r � r0� � 2.�x, y, z�
r0 � 	1, 1, 1
.r � 	x, y, z


AB
\

� BC
\

� CA
\

.
CB,A,

�v� � 4.
�x, y, z��x, y, z�.�x1, y1, z1�

v

w � i � 2j � 3k.ba

w � i � 2j � k.ba

baw � 0,

v.u

w � au � bv.u � i � j, v � j � k,

Q�6, 8, 2�P�1, 2, 5�,
Q�1, �3, 3�P�4, 3, 0�,

Q.P

z-45�
xz-v

WRITING ABOUT CONCEPTS
93. Describing Coordinates A point in the three-

dimensional coordinate system has coordinates 
Describe what each coordinate measures.

94. Distance Formula Give the formula for the distance
between the points and 

95. Standard Equation of a Sphere Give the standard
equation of a sphere of radius centered at 

96. Parallel Vectors State the definition of parallel vectors.

�x0, y0, z0�.r,

�x2, y2, z2�.�x1, y1, z1�

�x0, y0, z0�.

The lights in an auditorium are 24-pound discs of radius 
18 inches. Each disc is supported by three equally spaced
cables that are inches long (see figure).

(a) Write the tension in each cable as a function of 
Determine the domain of the function.

(b) Use a graphing utility and the function in part (a) to
complete the table.

(c) Use a graphing utility to graph the function in part (a).
Determine the asymptotes of the graph.

(d) Confirm the asymptotes of the graph in part (c) 
analytically.

(e) Determine the minimum length of each cable when a
cable is designed to carry a maximum load of 10 pounds.

L 20 25 30 35 40 45 50

T

L.T

18 in.

L

L

101. Auditorium Lights

Losevsky Photo and Video/Shutterstock.com
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766 Chapter 11 Vectors and the Geometry of Space

11.3 The Dot Product of Two Vectors

Use properties of the dot product of two vectors.
Find the angle between two vectors using the dot product.
Find the direction cosines of a vector in space.
Find the projection of a vector onto another vector.
Use vectors to find the work done by a constant force.

The Dot Product

So far, you have studied two operations with vectors—vector addition and multiplication
by a scalar—each of which yields another vector. In this section, you will study a third
vector operation, the dot product. This product yields a scalar, rather than a vector.

Proof To prove the first property, let and Then

For the fifth property, let Then

Proofs of the other properties are left to you.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Finding Dot Products

Let and 

a.

b.

c.

d.

Notice that the result of part (b) is a vector quantity, whereas the results of the other
three parts are scalar quantities.

� 25� ��4���4� � �3��3�� ��4, 3� � ��4, 3��w �2 � w � w

u � �2v� � 2�u � v� � 2��6� � �12

�u � v�w � �6��4, 3� � �24, �18�
u � v � �2, �2� � �5, 8� � 2�5� � ��2��8� � �6

w � ��4, 3�.v � �5, 8�,u � �2, �2�,

� �v �2.� ��v1
2 � v2

2 � v3
2 �2 v � v � v1

2 � v2
2 � v3

2

v � �v1, v2, v3�.

� v � u.� v1u1 � v2u2 � v3u3 u � v � u1v1 � u2v2 � u3v3

v � �v1, v2, v3�.u � �u1, u2, u3�

Definition of Dot Product

The dot product of and is

The dot product of and is

u � v � u1v1 � u2v2 � u3v3.

v � �v1, v2, v3�u � �u1, u2, u3�

u � v � u1v1 � u2v2.

v � �v1, v2�u � �u1, u2�

THEOREM 11.4 Properties of the Dot Product

Let and be vectors in the plane or in space and let be a scalar.

1. Commutative Property

2. Distributive Property

3.

4.

5. v � v � �v �2

0 � v � 0

c�u � v� � cu � v � u � cv

u � �v � w� � u � v � u � w

u � v � v � u

cwv,u,Exploration

Interpreting a Dot Product
Several vectors are shown
below on the unit circle. 
Find the dot products of 
several pairs of vectors. 
Then find the angle between
each pair that you used. 
Make a conjecture about the 
relationship between the dot
product of two vectors and 
the angle between the 
vectors.

0°

30°

60°120°

150°

180°

210°

240°
270°

300°

330°

90°

REMARK Because the dot
product of two vectors yields a
scalar, it is also called the scalar
product (or inner product) of the
two vectors.
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Angle Between Two Vectors
The angle between two nonzero vectors is the angle between their
respective standard position vectors, as shown in Figure 11.24. The next theorem shows
how to find this angle using the dot product. (Note that the angle between the zero 
vector and another vector is not defined here.)

The angle between two vectors
Figure 11.24

Proof Consider the triangle determined by vectors and as shown in
Figure 11.24. By the Law of Cosines, you can write

Using the properties of the dot product, the left side can be rewritten as

and substitution back into the Law of Cosines yields

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Note in Theorem 11.5 that because and are always positive, and 
will always have the same sign. Figure 11.25 shows the possible orientations of two
vectors.

Figure 11.25
cos � � 10 < cos � < 1cos � � 0�1 < cos � < 0cos � � �1
� � 00 < � < ��2� � ��2��2 < � < �� � �

u
v

Same
direction

θ
u

v

u   v > 0

θ
u

v

u   v = 0

θu

v

u   v < 0

θ

u v

Opposite
direction

cos �u � v�v��u�

 cos � �
u � v

�u � �v �
.

 �2u � v � �2�u � �v � cos �

 �v �2 � 2u � v � �u �2 � �u �2 � �v �2 � 2 �u � �v � cos �

 � �v �2 � 2u � v � �u�2

 � v � v � u � v � v � u � u � u

 � �v � u� � v � �v � u� � u

 �v � u �2 � �v � u� � �v � u�

�v � u �2 � �u �2 � �v �2 � 2�u � �v � cos �.

v � u,v,u,

Origin

u
v

θ

v − u

0 � � � �,�,
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THEOREM 11.5 Angle Between Two Vectors

If is the angle between two nonzero vectors and where then

cos � �
u � v

�u � �v �
.

0 � � � �,v,u�
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From Theorem 11.5, you can see that two nonzero vectors meet at a right angle if
and only if their dot product is zero. Two such vectors are said to be orthogonal.

From this definition, it follows that the zero vector is orthogonal to every vector 
because Moreover, for you know that if and only if

So, you can use Theorem 11.5 to conclude that two nonzero vectors are
orthogonal if and only if the angle between them is 

Finding the Angle Between Two Vectors

See LarsonCalculus.com for an interactive version of this type of example.

For and find the
angle between each pair of vectors.

a. and b. and c. and 

Solution

a.

Because radians.

b.

Because and are orthogonal. So,

c.

Consequently, Note that and are parallel, with 

When the angle between two vectors is known, rewriting Theorem 11.5 in the form

Alternative form of dot product

produces an alternative way to calculate the dot product. 

Alternative Form of the Dot Product

Given that and the angle between and is find 

Solution Use the alternative form of the dot product as shown.

u � v � �u� �v� cos � � �10��7� cos 
�

4
� 35�2

u � v.��4,vu�u� � 10, �v� � 7,

     u � v � �u� �v� cos �     

v � �2z.zv� � �.

cos � �
v � z

�v � �z �
�

�8 � 0 � 2
�20�5

�
�10
�100

� �1

� � ��2.wuu � w � 0,

cos � �
u � w

�u � �w �
�

3 � 1 � 4
�14�6

�
0

�84
� 0

� � arccos 
�4
�70

	 2.069u � v < 0,

cos � �
u � v

�u � �v �
�

�12 � 0 � 4
�14�20

�
�8

2�14�5
�

�4
�70

zvwuvu

z � �2, 0, �1�,w � �1, �1, �2�,v � ��4, 0, 2�,u � �3, �1, 2�,

��2.
� � ��2.

cos � � 00 � � � �,0 � u � 0.
u,
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Definition of Orthogonal Vectors

The vectors and are orthogonal when u � v � 0.vu

REMARK The terms “perpendicular,” “orthogonal,” and “normal” all mean 
essentially the same thing––meeting at right angles. It is common, however, to say that
two vectors are orthogonal, two lines or planes are perpendicular, and a vector is 
normal to a line or plane.

REMARK The angle
between and in 
Example 3(a) can also be 
written as approximately
118.561	.

vu
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Direction Cosines
For a vector in the plane, you have seen that it 
is convenient to measure direction in terms of 
the angle, measured counterclockwise, the
positive axis the vector. In space, it is more
convenient to measure direction in terms of the
angles the nonzero vector and the 
three unit vectors and as shown in 
Figure 11.26. The angles and are the
direction angles of and and

are the direction cosines of Because

and

it follows that By similar reasoning with the unit vectors and you
have

is the angle between and 

is the angle between and 

is the angle between and 

Consequently, any nonzero vector in space has the normalized form

and because is a unit vector, it follows that

Finding Direction Angles

Find the direction cosines and angles for the vector and show that

Solution Because you can write the following.

Angle between and 

Angle between and 

Angle between and 

Furthermore, the sum of the squares of the direction cosines is

See Figure 11.27.

 � 1.

 �
29
29

 cos2 
 � cos2 � � cos2 � �
4

29
�

9
29

�
16
29

kv� 	 42.0	cos � �
v3

�v �
�

4
�29

jv� 	 56.1	cos � �
v2

�v �
�

3
�29

iv
 	 68.2	cos 
 �
v1

�v �
�

2
�29

�v � � �22 � 32 � 42 � �29,

cos2 
 � cos2 � � cos2 � � 1.
v � 2i � 3j � 4k,

cos2 
 � cos2 � � cos2 � � 1.

v��v �

v
�v�

�
v1

�v �
i �

v2

�v �
j �

v3

�v �
k � cos 
 i � cos � j � cos � k

v

k.v�cos � �
v3

�v �
.

j.v�cos � �
v2

�v �

i.v
cos 
 �
v1

�v �

k,jcos 
 � v1��v �.

v � i � �v1, v2, v3� � �1, 0, 0� � v1

v � i � �v � � i � cos 
 � �v � cos 


v.cos �
cos �,cos 
 ,v,

�
, �,
k,j,i,

vbetween

tox-
from

11.3 The Dot Product of Two Vectors 769

x

y

v

j

k

i

γ

β
α

z

Direction angles
Figure 11.26

z

x y

4
3

2
1

4
3

1
2

4

3

2

1

γ

βα

γ
β = angle between v and j

= angle between v and k

v = 2i + 3j + 4k

α = angle between v and i

The direction angles of 
Figure 11.27

v

REMARK Recall that 
and are the Greek letters
alpha, beta, and gamma,
respectively.

�
�,
,
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Projections and Vector Components
You have already seen applications in which two vectors are added to produce a
resultant vector. Many applications in physics and engineering pose the reverse
problem—decomposing a vector into the sum of two vector components. The following
physical example enables you to see the usefulness of this procedure.

Consider a boat on an inclined ramp, as shown in Figure 11.28. The force due to
gravity pulls the boat down the ramp and against the ramp. These two forces, and

are orthogonal—they are called the vector components of 

Vector components of 

The forces and help you analyze the effect of gravity on the boat. For example,
indicates the force necessary to keep the boat from rolling down the ramp, whereas
indicates the force that the tires must withstand.

projection of onto vector component of along 
vector component of orthogonal to 

Figure 11.29

Finding a Vector Component of u Orthogonal to v

Find the vector component of that is orthogonal to given that 

and

Solution Because where is parallel to it follows that is the
vector component of orthogonal to So, you have

Check to see that is orthogonal to as shown in Figure 11.30.v,w2

 � ��3, 4�.
 � �5, 10� � �8, 6�

w2 � u � w1

v.u
w2v,w1u � w1 � w2,

u � �5, 10� � w1 � w2.

w1 � projvu � �8, 6�

v � �4, 3�,u � �5, 10�

vuw2 �
vuv �uw1 � projvu �

θ

w1

w2
u

v

is obtuse.θ

θ

w1

w2
u

v

is acute.θ

w2

w1

w2w1

FF � w1 � w2

F.w2,
w1

F
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Definitions of Projection and Vector Components

Let and be nonzero vectors. Moreover, let

where is parallel to and is orthogonal to as shown in Figure 11.29.

1. is called the projection of onto or the vector component of along
and is denoted by 

2. is called the vector component of orthogonal to v.uw2 � u � w1

w1 � projvu.v,
uvuw1

v,w2vw1

u � w1 � w2

vu

x

w1w2

u

v

(−3, 4)

(8, 6)

(4, 3)

(5, 10)

−2−4 2 4 6 8

−2

2

4

8

10

y

Figure 11.30
u � w1 � w2

F
w2

w1

The force due to gravity pulls the boat
against the ramp and down the ramp.
Figure 11.28
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From Example 5, you can see that it is easy to find the vector component once
you have found the projection, of onto To find this projection, use the dot 
product in the next theorem, which you will prove in Exercise 78.

The projection of onto can be written as a scalar multiple of a unit vector in the
direction of That is,

The scalar is called the component of in the direction of So,

Decomposing a Vector into Vector Components

Find the projection of onto and the vector component of orthogonal to for 

and

Solution The projection of onto is

The vector component of orthogonal to is the vector

See Figure 11.31.

Finding a Force

A 600-pound boat sits on a ramp inclined at as shown in Figure 11.32. What force
is required to keep the boat from rolling down the ramp?

Solution Because the force due to gravity is vertical and downward, you can
represent the gravitational force by the vector To find the force required to
keep the boat from rolling down the ramp, project onto a unit vector in the 
direction of the ramp, as follows.

Unit vector along ramp

Therefore, the projection of onto is 

The magnitude of this force is 300, and therefore a force of 300 pounds is required to
keep the boat from rolling down the ramp.

w1 � projvF � 
F � v
�v �2 �v � �F � v�v � ��600�
1

2�v � �300
�3
2

i �
1
2

j�.

vF

v � cos 30	 i � sin 30	j �
�3
2

i �
1
2

j

vF
F � �600j.

30	,

w2 � u � w1 � �3i � 5j � 2k� � 
14
9

i �
2
9

j �
4
9

k� �
13
9

i �
47
9

j �
22
9

k.

vu

w1 � projv u � 
u � v
�v �2 �v � 
12

54��7i � j � 2k� �
14
9

i �
2
9

j �
4
9

k.

vu

v � 7i � j � 2k.u � 3i � 5j � 2k

vuvu

k �
u � v
�v�

� �u� cos �.

v.uk


u � v
�v �2 �v � 
u � v

�v � � 
v

�v �
� �k� v

�v �
.

v.
vu

v.uw1,
w2
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THEOREM 11.6 Projection Using the Dot Product

If and are nonzero vectors, then the projection of onto is

projvu � 
u � v
�v �2 �v.

vuvu

REMARK Note the 
distinction between the terms
“component” and “vector 
component.” For example,
using the standard unit vectors
with is the 
component of in the direction
of and is the vector 
component in the direction of i.

u1ii
u

u1u � u1i � u2 j,

8

6

2

4

2

−2

−4

y

x

w1

w2

u

v

u = 3i − 5j + 2k
v = 7i + j − 2k

z

Figure 11.31
u � w1 � w2

F

w1 = projv(F)

v

30°

w1

Figure 11.32
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Work
The work done by the constant force acting along the line of motion of an object
is given by

as shown in Figure 11.33(a). When the constant force is not directed along the line of
motion, you can see from Figure 11.33(b) that the work done by the force is

(a) Force acts along the line of motion. (b) Force acts at angle with the line of motion.

Figure 11.33

This notion of work is summarized in the next definition.

Finding Work

To close a sliding door, a person pulls on a rope with a constant force of 50 pounds at
a constant angle of as shown in Figure 11.34. Find the work done in moving the
door 12 feet to its closed position.

Figure 11.34

Solution Using a projection, you can calculate the work as follows.

� 300 foot-pounds�
1
2

�50��12�� cos�60	� �F � � PQ
\

�W � �projPQ
\ F � �PQ

\

�

P Q

12 ft

12 ft

F

60°

projPQF

60	,

�

projPQ F

F

P Q

θ

Work = ⎜⎜projPQ F⎜⎜⎜⎜PQ⎜⎜
Work = ⎜⎜F⎜⎜⎜⎜PQ⎜⎜

F

P Q

� F � PQ
\

.� �cos ���F � � PQ
\

�W � �projPQ
\F � � PQ

\

�

W
F

W � �magnitude of force��distance� � �F � � PQ
\

�

FW
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Definition of Work

The work done by a constant force as its point of application moves 
along the vector is one of the following.

1. Projection form

2. Dot product formW � F � PQ
\

 W � �projPQ
\ F � �PQ

\

�

PQ
\

FW
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11.3 The Dot Product of Two Vectors 773

Finding Dot Products In Exercises 1–8, find (a) 
(b) (c) (d) and (e) 

1. 2.

3. 4.

5. 6.

7. 8.

Finding the Angle Between Two Vectors In Exercises
9–16, find the angle between the vectors (a) in radians and
(b) in degrees.

9. 10.

11.

12.

13. 14.

15. 16.

Alternative Form of Dot Product In Exercises 17 and 18,
use the alternative form of the dot product to find 

17. and the angle between and is 

18. and the angle between and is 

Comparing Vectors In Exercises 19–24, determine
whether and are orthogonal, parallel, or neither.

19. 20.

21. 22.

23. 24.

Classifying a Triangle In Exercises 25–28, the vertices of a
triangle are given. Determine whether the triangle is an acute
triangle, an obtuse triangle, or a right triangle. Explain your
reasoning.

25.

26.

27.

28.

Finding Direction Angles In Exercises 29–34, find the
direction cosines and angles of , and demonstrate that the sum
of the squares of the direction cosines is 1.

29. 30.

31. 32.

33. 34.

Finding the Projection of u onto v In Exercises 35–42,
(a) find the projection of onto and (b) find the vector 
component of orthogonal to 

35. 36.

37.

38.

39.

40.

41.

42. v � 3i � 2ku � i � 4k,

v � 3j � 4ku � 2i � j � 2k,

v � �2, 1, �1�u � �8, 2, 0�,

v � ��1, 1, 1�u � �0, 3, 3�,

v � 3i � 2ju � 2i � 3j,

v � 5i � ju � 2i � 3j,

v � �1, 3�u � �9, 7�,v � �1, 4�u � �6, 7�,

v.u
v,u

u � ��1, 5, 2�u � �0, 6, �4�

u � �4i � 3j � 5ku � 3i � 2j � 2k

u � 5i � 3j � ku � i � 2j � 2k

u

�2, �7, 3�, ��1, 5, 8�, �4, 6, �1�
�2, 0, 1�, �0, 1, 2�, ��0.5, 1.5, 0�
��3, 0, 0�, �0, 0, 0�, �1, 2, 3�
�1, 2, 0�, �0, 0, 0�, ��2, 1, 0�

v � �sin �, �cos �, 0�v � ��1, �1, �1�

u � �cos �, sin �, �1�u � �2, �3, 1�

v � 2i � j � kv � i � 2j � k

u � �2i � 3j � ku � j � 6k

v � 2i � 4ju � �
1
3�i � 2j�,v � � 1

2, �2
3�u � �4, 3�,

vu

5��6.vu�v � � 25,�u � � 40,

��3.vu�v � � 5,�u � � 8,

u � v.

v � i � 2j � kv � �2j � 3k

u � 2i � 3j � ku � 3i � 4j

v � 2i � 3jv � �2, 1, �1�

u � 3i � 2j � ku � �1, 1, 1�

v � cos
3�

4 � i � sin
3�

4 � ju � cos
�

6� i � sin
�

6� j,

v � �2i � 4ju � 3i � j,

v � �2, �1�u � �3, 1�,v � �2, �2�u � �1, 1�,

�

v � i � 3j � 2kv � i � k

u � 2i � j � 2ku � 2i � j � k

v � iu � i,v � �0, 6, 5�u � �2, �3, 4�,

v � �7, 5�u � ��4, 8�,v � ��3, 2�u � �6, �4�,

v � ��2, 3�u � �4, 10�,v � ��1, 5�u � �3, 4�,

u � �2v.�u � vv,�u �2,u � u,
u � v,

11.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

WRITING ABOUT CONCEPTS
43. Dot Product Define the dot product of vectors and 

44. Orthogonal Vectors State the definition of orthogonal
vectors. When vectors are neither parallel nor orthogonal,
how do you find the angle between them? Explain.

45. Using Vectors Determine which of the following are
defined for nonzero vectors and Explain your 
reasoning.

(a) (b)

(c) (d)

46. Direction Cosines Describe direction cosines and
direction angles of a vector 

47. Projection Give a geometric description of the 
projection of onto 

48. Projection What can be said about the vectors and 
when (a) the projection of onto equals and (b) the
projection of onto equals 

49. Projection When the projection of onto has the
same magnitude as the projection of onto can you 
conclude that Explain.�u� � �v �?

u,v
vu

0?vu
uvu

vu

v.u

v.

�u� � �v � w�u � v � w

�u � v�wu � �v � w�

w.v,u,

v.u

50. HOW DO YOU SEE IT? What is known about
the angle between two nonzero vectors and 

when

(a) ? (b) ? (c) ?

vu

Origin

θ

u � v < 0u � v > 0u � v � 0

v,u�,
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51. Revenue The vector gives the
numbers of hamburgers, chicken sandwiches, and cheeseburgers,
respectively, sold at a fast-food restaurant in one week. The
vector gives the prices (in dollars) per
unit for the three food items. Find the dot product and
explain what information it gives.

52. Revenue Repeat Exercise 51 after increasing prices by
4%. Identify the vector operation used to increase prices by 4%.

Orthogonal Vectors In Exercises 53–56, find two vectors
in opposite directions that are orthogonal to the vector (The
answers are not unique.)

53. 54.

55. 56.

57. Finding an Angle Find the angle between a cube’s 
diagonal and one of its edges.

58. Finding an Angle Find the angle between the diagonal of
a cube and the diagonal of one of its sides.

59. Braking Load A 48,000-pound truck is parked on a 
slope (see figure). Assume the only force to overcome is

that due to gravity. Find (a) the force required to keep the truck
from rolling down the hill and (b) the force perpendicular to
the hill.

60. Braking Load A 5400-pound sport utility vehicle is
parked on an slope. Assume the only force to overcome is
that due to gravity. Find (a) the force required to keep the 
vehicle from rolling down the hill and (b) the force 
perpendicular to the hill.

61. Work An object is pulled 10 feet across a floor, using a
force of 85 pounds. The direction of the force is above the
horizontal (see figure). Find the work done.

Figure for 61 Figure for 62

62. Work A toy wagon is pulled by exerting a force of 25 pounds
on a handle that makes a angle with the horizontal (see 
figure). Find the work done in pulling the wagon 50 feet.

63. Work A car is towed using a force of 1600 newtons. The
chain used to pull the car makes a angle with the 
horizontal. Find the work done in towing the car 2 kilometers.

True or False? In Exercises 65 and 66, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

65. If and then 

66. If and are orthogonal to then is orthogonal to 

Using Points of Intersection In Exercises 67–70, (a) find
all points of intersection of the graphs of the two equations,
(b) find the unit tangent vectors to each curve at their points of
intersection, and (c) find the angles between the
curves at their points of intersection.

67. 68.

69. 70.

71. Proof Use vectors to prove that the diagonals of a rhombus
are perpendicular.

72. Proof Use vectors to prove that a parallelogram is a 
rectangle if and only if its diagonals are equal in length.

73. Bond Angle Consider a regular tetrahedron with vertices
and where is a positive

real number.

(a) Sketch the graph of the tetrahedron.

(b) Find the length of each edge.

(c) Find the angle between any two edges.

(d) Find the angle between the line segments from the 
centroid to two vertices. This is the bond
angle for a molecule such as or where the
structure of the molecule is a tetrahedron.

74. Proof Consider the vectors and
where Find the dot product of

the vectors and use the result to prove the identity

75. Proof Prove that 

76. Proof Prove the Cauchy-Schwarz Inequality,

77. Proof Prove the triangle inequality 

78. Proof Prove Theorem 11.6.

�u � v � � �u � � �v �.

�u � v� � �u � �v �.

�u � v�2 � �u� 2 � �v �2 � 2u � v.

cos�
 � �� � cos 
 cos � � sin 
 sin �.


 > �.v � �cos �, sin �, 0�,
u � �cos 
, sin 
, 0�

PbCl4,CH 4

�k�2, k�2, k�2�

k�0, k, k�,�k, 0, k�,�k, k, 0�,�0, 0, 0�,

y � x3 � 1� y � 1�2 � x,y � x2 � 1y � 1 � x2,

y � x1�3y � x3,y � x1�3y � x2,

�0	 � � � 90	

w.u � vw,vu

v � w.u  0,u � v � u � w

25	

20	

20°
60°

10 ft

85 lb

Not drawn to scale

60	

18	

Weight = 48,000 lb

10°

10	

u � �4, �3, 6�u � �3, 1, �2�

u � 9i � 4ju � �
1
4 i �

3
2 j

u.

u � v,
v � �2.25, 2.95, 2.65�

u � �3240, 1450, 2235�

A sled is pulled by 
exerting a force of 
100 newtons on a rope
that makes a angle
with the horizontal. 
Find the work done in
pulling the sled 
40 meters.

25	

64. Work

Ziva_K/iStockphoto.com
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11.4 The Cross Product of Two Vectors in Space 775

11.4 The Cross Product of Two Vectors in Space

Find the cross product of two vectors in space.
Use the triple scalar product of three vectors in space.

The Cross Product
Many applications in physics, engineering, and geometry involve finding a vector in
space that is orthogonal to two given vectors. In this section, you will study a product
that will yield such a vector. It is called the cross product, and it is most conveniently
defined and calculated using the standard unit vector form. Because the cross product
yields a vector, it is also called the vector product.

It is important to note that this definition applies only to three-dimensional vectors. The
cross product is not defined for two-dimensional vectors.

A convenient way to calculate is to use the determinant form with cofactor
expansion shown below. (This determinant form is used simply to help remember
the formula for the cross product—it is technically not a determinant because not all the
entries of the corresponding matrix are real numbers.)

Note the minus sign in front of the component. Each of the three determinants
can be evaluated by using the diagonal pattern

Here are a couple of examples.

and 

� 4
�6

0
3� � �4��3� � �0���6� � 12

�23 4
�1� � �2���1� � �4��3� � �2 � 12 � �14

�ac b
d � � ad � bc.

2 � 2j-

 � �u2v3 � u3v2� i � �u1v3 � u3v1� j � �u1v2 � u2v1�k

 � � u2

v2

u3

v3 � i � � u1

v1

u3

v3 �  j � � u1

v1

u2

v2 �  k

 � � i
u1
v

1

j
u2

v2

k
u3

v3 �  i � � i
u1
v

1

j
u2

v2

k
u3

v3 �   j � � i
u1
v

1

j
u2

v2

k
u3

v3 �   k
 u � v � � i  

u1

v1

j
u2

v2

 k
u3

v3 �
3 � 3

u � v

Definition of Cross Product of Two Vectors in Space

Let 

and

be vectors in space. The cross product of and is the vector

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k.

vu

v � v1i � v2 j � v3ku � u1i � u2 j � u3k

Put “ ” in Row 2.u

Put “ ” in Row 3.v

Exploration

Geometric Property of the
Cross Product Three pairs
of vectors are shown below.
Use the definition to find the
cross product of each pair.
Sketch all three vectors in a
three-dimensional system.
Describe any relationships
among the three vectors. Use
your description to write a
conjecture about and

a.

b.

c.

x

y
1 2 3

2

−2
−3

3

2

1

−3

−3 −2

u

v

z
u � �3, 3, 0�, v � �3, �3, 0�

x

y
1 2 33

2
1

−2
−3

3

2

−3

−2

−3 −2

v

u

z
u � �0, 3, 3�, v � �0, �3, 3�

x

y
1 2 33

1

−2
−3

3

2

1

−3

−3
u

v

z

u � �3, 0, 3�, v � �3, 0, �3�

u � v.
v,u,

9781285774770_1104.qxp  8/27/13  9:49 AM  Page 775

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Finding the Cross Product

For and find each of the following.

a. b. c.

Solution

a.

b.

c.

The results obtained in Example 1 suggest some interesting algebraic properties of
the cross product. For instance, and These properties,
and several others, are summarized in the next theorem.

Proof To prove Property 1, let and 
Then,

and

which implies that Proofs of Properties 2, 3, 5, and 6 are left as
exercises (see Exercises 51–54).
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

u � v � ��v � u�.

v � u � �v2u3 � v3u2�i � �v1u 3 � v3u1�j � �v1u2 � v2u1�k

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k

v � v1i � v2 j � v3k.u � u1i � u2 j � u3k

v � v � 0.u � v � ��v � u�,

v � v � � i
3
3

j
1
1

k
�2
�2� � 0

 � �3i � 5 j � 7k

 � �1 � 4�i � �3 � 2�j � ��6 � 1�k

 � � 1
�2

�2
1� i � �31 �2

1�j � �31 1
�2�k

  v � u � � i
3
1

j
1

�2

k
�2

1�
 � 3i � 5 j � 7k

 � �4 � 1� i � ��2 � 3�j � �1 � 6�k

 � ��2
1

1
�2� i � �13 1

�2�j � �13 �2
1�k

  u � v � � i
1
3

j
�2

1

k
1

�2�
v � vv � uu � v

v � 3i � j � 2k,u � i � 2 j � k

776 Chapter 11 Vectors and the Geometry of Space

THEOREM 11.7 Algebraic Properties of the Cross Product

Let and be vectors in space, and let be a scalar.

1.

2.

3.

4.

5.

6. u � �v � w� � �u � v� � w

u � u � 0

u � 0 � 0 � u � 0

c�u � v� � �cu� � v � u � �cv�
u � �v � w� � �u � v� � �u � w�
u � v � ��v � u�

cwv,u,

NOTATION FOR DOT AND CROSS 
PRODUCTS

The notation for the dot product
and cross product of vectors was
first introduced by the American
physicist Josiah Willard Gibbs
(1839–1903). In the early 1880s,
Gibbs built a system to represent
physical quantities called “vector
analysis.” The system was a 
departure from Hamilton’s theory
of quaternions.

REMARK Note that this
result is the negative of that in
part (a).
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Note that Property 1 of Theorem 11.7 indicates that the cross product is not
commutative. In particular, this property indicates that the vectors and have
equal lengths but opposite directions. The next theorem lists some other geometric
properties of the cross product of two vectors.

Proof To prove Property 2, note because it follows that

To prove Property 4, refer to Figure 11.35, which is a parallelogram having and as
adjacent sides. Because the height of the parallelogram is the area is

Proofs of Properties 1 and 3 are left as exercises (see Exercises 55 and 56).
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Both and are perpendicular to the plane determined by and One
way to remember the orientations of the vectors and is to compare them with
the unit vectors and as shown in Figure 11.36. The three vectors 
and form a right-handed system, whereas the three vectors and form
a left-handed system.

Right-handed systems
Figure 11.36

u × v

v

u
Plane determined
by u and v

j

i

k = i × j

xy-plane

v � uv,u,u � v
v,u,k � i � j,j,i,

u � vv,u,
v.uv � uu � v

 � �u � v�.
 � �u � �v� sin�

 Area � �base��height�

�v� sin �,
uv

 � �u � v �.

 � ��u2v3 � u3v2)
2 � �u1v3 � u3v1�2 � �u1v2 � u2v1�2

 � ��u1
2 � u2

2 � u3
2��v1

2 � v2
2 � v3

2� � �u1v1 � u2v2 � u3v3�2

 � � �u�2 �v�2 � �u � v�2

 � �u� �v��1 �
�u � v�2

�u �2 �v�2

 �u� �v� sin� � �u� �v��1 � cos2 �

cos � � �u � v�	��u� �v��,

v � uu � v
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THEOREM 11.8 Geometric Properties of the Cross Product

Let and be nonzero vectors in space, and let be the angle between and 

1. is orthogonal to both and 

2.

3. if and only if and are scalar multiples of each other.

4. area of parallelogram having and as adjacent sides.vu�u � v � �

vuu � v � 0

�u � v � � �u � �v � sin �

v.uu � v

v.u�vu

REMARK It follows
from Properties 1 and 2 in 
Theorem 11.8 that if is a unit
vector orthogonal to both and

then 

u � v �  ±��u� �v� sin ��n.

v,
u

n

u

v

θ

  ⎜⎜v⎜⎜ θsin

The vectors and form adjacent
sides of a parallelogram.
Figure 11.35

vu
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Using the Cross Product

See LarsonCalculus.com for an interactive version of this type of example.

Find a unit vector that is orthogonal to both

and

Solution The cross product as shown in Figure 11.37, is orthogonal to both
and 

Cross product

Because 

a unit vector orthogonal to both and is

In Example 2, note that you could have used the cross product to form a unit
vector that is orthogonal to both and With that choice, you would have obtained the
negative of the unit vector found in the example.

Geometric Application of the Cross Product

The vertices of a quadrilateral are listed below. Show that the quadrilateral is a 
parallelogram, and find its area.

Solution From Figure 11.38, you can see that the sides of the quadrilateral correspond
to the following four vectors.

So, is parallel to and is parallel to , and you can conclude that the
quadrilateral is a parallelogram with and as adjacent sides. Moreover, because

Cross product

the area of the parallelogram is

Is the parallelogram a rectangle? You can determine whether it is by finding the angle
between the vectors and AD

\

.AB
\

� AB
\

� AD
\

� � �1036 
 32.19.

 � 26i � 18j � 6k

AB
\

� AD
\

� � i
�3

0

j
4

�2

k
1
6�

AD
\

AB
\

CB
\

AD
\

CD
\

AB
\

CB
\

� 0i � 2j � 6k � �AD
\

AD
\

� 0i � 2j � 6k

CD
\

� 3i � 4j � k � �AB
\

AB
\

� �3i � 4j � k

 D � �5, 0, 6� C � �2, 4, 7�
 B � �2, 6, 1� A � �5, 2, 0�

v.u
v � u

u � v
�u � v�

� �
3

�134
i �

2
�134

j �
11

�134
k.

vu

�u � v� � ���3�2 � 22 � 112 � �134

 � �3i � 2j � 11k

u � v � � i
1
2

j
�4

3

k
1
0�

v.u
u � v,

v � 2i � 3j.

u � i � 4j � k
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x

y

2

4

6

8

10

12

2
4

4

2

−4

(−3, 2, 11)

(2, 3, 0)

(1, −4, 1)
u

v

z

u × v

The vector is orthogonal to both
and 

Figure 11.37
v.u

u � v

y

x

6

2 4 6

8

6

2

C = (2, 4, 7)

D = (5, 0, 6)

B = (2, 6, 1)

A = (5, 2, 0)

z

The area of the parallelogram is
approximately 32.19.
Figure 11.38
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In physics, the cross product can be used to measure torque—the moment of a
force about a point as shown in Figure 11.39. If the point of application of the
force is then the moment of about is

Moment of about 

The magnitude of the moment measures the tendency of the vector to rotate
counterclockwise (using the right-hand rule) about an axis directed along the vector 

An Application of the Cross Product

A vertical force of 50 pounds is applied to the end of a one-foot lever that is attached
to an axle at point as shown in Figure 11.40. Find the moment of this force about the
point when 

Solution Represent the 50-pound force as

and the lever as

The moment of about is

Moment of about 

The magnitude of this moment is 25 foot-pounds.

In Example 4, note that the moment (the tendency of the lever to rotate about its
axle) is dependent on the angle When the moment is 0. The moment is 
greatest when 

The Triple Scalar Product
For vectors and in space, the dot product of and 

is called the triple scalar product, as defined in Theorem 11.9. The proof of this
theorem is left as an exercise (see Exercise 59).

Note that the value of a determinant is multiplied by when two rows are 
interchanged. After two such interchanges, the value of the determinant will be
unchanged. So, the following triple scalar products are equivalent.

w � �u � v�v � �w � u� �u � �v � w� �

�1

u � �v � w�

v � wuwv,u,

� � 0.
� � �	2,�.

PFM � PQ
\

� F � � i

0

0

     

j

1
2
0

     

k

�3
  2  
�50� � �25i.

PF

PQ
\

� cos�60	�j � sin�60	�k �
1
2

j �
�3
2

k.

F � �50k

� � 60	.P
P,

M.
PQ

\

M

PFM � PQ
\

� F.

PFQ,
P,F

M
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THEOREM 11.9 The Triple Scalar Product

For and 
the triple scalar product is

u � �v � w� � �u1

v1

w1

u2

v2

w2

u3

w3

v3 �.
w � w1i � w2j � w3k,u � u1i � u2 j � u3k, v � v1i � v2 j � v3k,

F

M

PQ

Q

P

The moment of about 
Figure 11.39

PF

x

y

F

Q

P
60°

z

A vertical force of 50 pounds is
applied at point 
Figure 11.40

Q.
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If the vectors and do not lie in the same plane, then the triple scalar 
product can be used to determine the volume of the parallelepiped (a 
polyhedron, all of whose faces are parallelograms) with and as adjacent edges,
as shown in Figure 11.41. This is established in the next theorem.

Proof In Figure 11.41, note that the area of the base is and the height of the
parallelpiped is Therefore, the volume is

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Volume by the Triple Scalar Product

Find the volume of the parallelepiped shown 
in Figure 11.42 having 

and

as adjacent edges.

Solution By Theorem 11.10, you have

Triple scalar product

A natural consequence of Theorem 11.10 is that the volume of the parallelepiped
is 0 if and only if the three vectors are coplanar. That is, when the vectors

and have the same initial point,
they lie in the same plane if and only if

u � �v � w� � � u1

v1

w1

u2

v2

w2

u3

v3

w3� � 0.

w � �w1, w2, w3�v � �v1, v2, v3�,u � �u1, u2, u3�,

 � 36.

 � 3�4� � 5�6� � 1��6�

 � 3�21 �2
1� � ��5��03 �2

1� � �1��03 2
1�

 � �303 �5
2
1

1
�2

1�
 V � �u � �v � w��

w � 3i � j � k

v � 2j � 2k

u � 3i � 5j � k

 � �u � �v � w��.
 � �u � �v � w�

�v � w� ��v � w�

 � �projv�wu� �v � w�
 V � �height��area of base�

�projv�wu�.
�v � w�

wv,u,
u � �v � w)

wv,u,

780 Chapter 11 Vectors and the Geometry of Space

THEOREM 11.10 Geometric Property of the Triple Scalar Product

The volume of a parallelepiped with vectors and as adjacent edges is 

V � �u � �v � w��.
wv,u,V

y

6

3

2

1
u

w
v

(0, 2, −2)

(3, −5, 1) (3, 1, 1)

x

z

The parallelepiped has a volume of 36.
Figure 11.42

u

w
v

⎜⎜projv × wu⎜⎜

v × w

Area of base 
Volume of parallelepiped 
Figure 11.41

� �u � �v � w��
� �v � w�
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11.4 The Cross Product of Two Vectors in Space 781

Cross Product of Unit Vectors In Exercises 1–6, find the
cross product of the unit vectors and sketch your result.

1. 2.

3. 4.

5. 6.

Finding Cross Products In Exercises 7–10, find (a) 
(b) and (c) 

7. 8.

9. 10.

Finding a Cross Product In Exercises 11–16, find 
and show that it is orthogonal to both and 

11. 12.

13. 14.

15. 16.

Finding a Unit Vector In Exercises 17–20, find a unit 
vector that is orthogonal to both and 

17. 18.

19. 20.

Area In Exercises 21–24, find the area of the parallelogram
that has the given vectors as adjacent sides. Use a computer
algebra system or a graphing utility to verify your result.

21. 22.

23. 24.

Area In Exercises 25 and 26, verify that the points are the
vertices of a parallelogram, and find its area.

25.

26.

Area In Exercises 27 and 28, find the area of the triangle with
the given vertices. Hint: is the area of the triangle

having and as adjacent sides.
27.

28.

30. Torque Both the magnitude and the direction of the force
on a crankshaft change as the crankshaft rotates. Find the
torque on the crankshaft using the position and data shown in
the figure.

Figure for 30 Figure for 31

31. Optimization A force of 180 pounds acts on the bracket
shown in the figure.

(a) Determine the vector and the vector representing the
force. ( will be in terms of .)

(b) Find the magnitude of the moment about by evaluating

(c) Use the result of part (b) to determine the magnitude of the
moment when 

(d) Use the result of part (b) to determine the angle when the
magnitude of the moment is maximum. At that angle, what
is the relationship between the vectors and Is it
what you expected? Why or why not?

(e) Use a graphing utility to graph the function for the 
magnitude of the moment about for 
Find the zero of the function in the given domain. Interpret
the meaning of the zero in the context of the problem.

0	 
 � 
 180	.A

AB
\

?F

�

� � 30	.

� AB
\

� F �.
A

�F
FAB

\

180 lb

θ

A15 in.

12 in.

B

F

0.1
6 f

t

2000 lb60°

A�2, �3, 4�, B�0, 1, 2�, C��1, 2, 0�
A�0, 0, 0�, B�1, 0, 3�, C��3, 2, 0�

�vu

1
2��u � v���

A�2, �3, 1�, B�6, 5, �1�, C�7, 2, 2�, D�3, �6, 4�
A�0, 3, 2�, B�1, 5, 5�, C�6, 9, 5�, D�5, 7, 2�

v � ��1, 2, 0�v � �1, 2, 3�

u � �2, �1, 0�u � �3, 2, �1�

v � j � kv � j � k

u � i � j � ku � j

v � 4i � 6kv � i � j � 4k

u � 2ku � �3i � 2j � 5k

v � �10, �12, �2�v � �2, 5, 3�

u � ��8, �6, 4�u � �4, �3, 1�

v.u

v � �2i � j � kv � 2i � j � k

u � i � 6ju � i � j � k

v � �5, �3, 0�v � �1, �2, 1�

u � ��10, 0, 6�u � �2, �3, 1�

v � �0, 1, 0�v � ��2, 5, 0�

u � ��1, 1, 2�u � �12, �3, 0�

v.u
u � v

v � �1, 5, 1�v � �1, �1, 5�

u � �3, �2, �2�u � �7, 3, 2�

v � 2i � 3j � 2kv � 3i � 2j � 5k

u � 3i � 5ku � �2i � 4j

v � v.v � u,
u � v,

k � ii � k

k � jj � k

i � jj � i

11.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

A child applies the brakes
on a bicycle by applying
a downward force of 
20 pounds on the pedal
when the crank makes 
a angle with the 
horizontal (see figure). 
The crank is 6 inches 
in length. Find the 
torque at 

40°
P

6 in.
F = 20 lb

P.

40	

29. Torque

Elena Elisseeva/Shutterstock.com
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782 Chapter 11 Vectors and the Geometry of Space

32. Optimization A force of 
56 pounds acts on the pipe 
wrench shown in the figure.

(a) Find the magnitude of 
the moment about by 
evaluating Use 
a graphing utility to graph 
the resulting function of 

(b) Use the result of part (a) to
determine the magnitude of the moment when 

(c) Use the result of part (a) to determine the angle when the
magnitude of the moment is maximum. Is the answer what
you expected? Why or why not?

Finding a Triple Scalar Product In Exercises 33–36, find

33. 34.

35. 36.

Volume In Exercises 37 and 38, use the triple scalar product
to find the volume of the parallelepiped having adjacent edges

and 

37. 38.

Volume In Exercises 39 and 40, find the volume of the
parallelepiped with the given vertices.

39.

40.

41. Comparing Dot Products Identify the dot products that
are equal. Explain your reasoning. (Assume and are
nonzero vectors.)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

42. Using Dot and Cross Products When and
what can you conclude about and 

True or False? In Exercises 47–50, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

47. It is possible to find the cross product of two vectors in a 
two-dimensional coordinate system.

48. If and are vectors in space that are nonzero and nonparallel,
then 

49. If and then 

50. If and then 

Proof In Exercises 51–56, prove the property of the cross
product.

51.

52.

53. 54.

55. is orthogonal to both and 

56. if and only if and are scalar multiples of each
other.

57. Proof Prove that if and are orthogonal.

58. Proof Prove that 

59. Proof Prove Theorem 11.9.

u � �v � w� � �u � w�v � �u � v�w.

vu�u � v� � �u� �v�

vuu � v � 0

v.uu � v

u � �v � w� � �u � v� � wu � u � 0

c�u � v� � �cu� � v � u � �cv�
u � �v � w� � �u � v� � �u � w�

v � w.u � v � u � w,u � v � u � w,u � 0,

v � w.u � v � u � w,u � 0

u � v � v � u.
vu

v?uu � v � 0,
u � v � 0

�w � u� � v��u � v� � w

w � �v � u�u � �w � v�
�u � �w� � v�u � v� � w

�v � w� � uu � �v � w�

wv,u,

��3, 4, 0�, ��1, 5, 5�, ��4, 1, 5�, ��4, 5, 5�
�0, 0, 0�, �0, 4, 0�, ��3, 0, 0�, ��1, 1, 5�
�3, 5, 1�, �5, 0, 5�, �2, 5, 6�, �5, 5, 6�
�0, 0, 0�, �3, 0, 0�, �0, 5, 1�, �2, 0, 5�

y

x

v

u

w
4 6 8

6

4

2

z

y

x

2
2

2

1

v
w

u

z

w � ��4, 0, �4�w � i � k

v � �0, 6, 6�v � j � k

u � �1, 3, 1�u � i � j

w.v,u,

w � �0, 2, 2�w � �0, 0, 1�

v � �1, 1, 1�v � �0, 3, 0�

u � �2, 0, 0�u � �2, 0, 1�

w � �0, 0, 1�w � k

v � �2, 1, 0�v � j

u � �1, 1, 1�u � i

u � �v � w�.

�

� � 45	.

�.

�OA
\

� F �.
O

WRITING ABOUT CONCEPTS
43. Cross Product Define the cross product of vectors 

and 

44. Cross Product State the geometric properties of the
cross product.

45. Magnitude When the magnitudes of two vectors are
doubled, how will the magnitude of the cross product of
the vectors change? Explain.

v.
u

46. HOW DO YOU SEE IT? The vertices of a 
triangle in space are and

Explain how to find a vector 
perpendicular to the triangle.

x

y
−2

5

4
3

2
1

1

5

4

3

2

z

(x1, y1, z1)
(x2, y2 z2)

(x3, y3, z3)

�x3, y3, z3�.
�x2, y2, z2�,�x1, y1, z1�,

18 in.

30°

θ F

O

A
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11.5 Lines and Planes in Space 783

11.5 Lines and Planes in Space

Write a set of parametric equations for a line in space.
Write a linear equation to represent a plane in space.
Sketch the plane given by a linear equation.
Find the distances between points, planes, and lines in space.

Lines in Space
In the plane, slope is used to determine the equation of a line. In space, it is more
convenient to use vectors to determine the equation of a line.

In Figure 11.43, consider the line through the point and parallel to
the vector The vector is a direction vector for the line and and

are direction numbers. One way of describing the line is to say that it consists of
all points for which the vector is parallel to This means that is a
scalar multiple of and you can write where is a scalar (a real number).

By equating corresponding components, you can obtain parametric equations of a line
in space.

If the direction numbers and are all nonzero, then you can eliminate the
parameter to obtain symmetric equations of the line.

Symmetric equations

Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line that passes through the point
and is parallel to as shown in Figure 11.44.

Solution To find a set of parametric equations of the line, use the coordinates
and and direction numbers and 

Parametric equations

Because and are all nonzero, a set of symmetric equations is

Symmetric equations

Neither parametric equations nor symmetric equations of a given line are unique.
For instance, in Example 1, by letting in the parametric equations, you would
obtain the point Using this point with the direction numbers and

would produce a different set of parametric equations

and z � �4t.y � 2 � 4t,x � 3 � 2t,

c � �4
b � 4,a � 2,�3, 2, 0�.

t � 1

x � 1
2

�
y � 2

4
�

z � 4
�4

.

cb,a,

z � 4 � 4ty � �2 � 4t,x � 1 � 2t,

c � �4.b � 4,a � 2,z1 � 4y1 � �2,x1 � 1,

v � �2, 4, �4�,�1, �2, 4�
L

     
x � x1

a
�

y � y1

b
�

z � z1

c
     

t
cb,a,

PQ
\

� �x � x1, y � y1, z � z1� � �at, bt, ct� � t v

tPQ
\

� t v,v
PQ

\

v.PQ
\

Q�x, y, z�
Lc

b,a,L,vv � �a, b, c�.
P�x1, y1, z1�L

THEOREM 11.11 Parametric Equations of a Line in Space

A line parallel to the vector and passing through the point
is represented by the parametric equations

and z � z1 � ct.y � y1 � bt,x � x1 � at,

P�x1, y1, z1�
v � �a, b, c�L

x

y

P(x1, y1, z1)

Q(x, y, z)

PQ = tv

L

v = 〈a, b, c〉

z

Line and its direction vector 
Figure 11.43

vL

x y
L

v = 〈2, 4, −4〉

(1, −2, 4)

4

2

−2

−4

2

4

−4

4

2

z

The vector is parallel to the line 
Figure 11.44

L.v
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Parametric Equations of a Line Through Two Points

See LarsonCalculus.com for an interactive version of this type of example.

Find a set of parametric equations of the line that passes through the points

and

Solution Begin by using the points and to find a direction 
vector for the line passing through and 

Using the direction numbers and with the point you
can obtain the parametric equations

and

Planes in Space
You have seen how an equation of a line in 
space can be obtained from a point on the line
and a vector parallel to it. You will now see 
that an equation of a plane in space can be 
obtained from a point in the plane and a 
vector normal (perpendicular) to the plane.

Consider the plane containing the point
having a nonzero normal vector

as shown in Figure 11.45. This plane consists 
of all points for which vector is
orthogonal to Using the dot product, you 
can write the following.

The third equation of the plane is said to be in standard form.

By regrouping terms, you obtain the general form of the equation of a plane in space.

General form of equation of plane     ax � by � cz � d � 0     

a�x � x1� � b�y � y1� � c�z � z1� � 0

 �a, b, c� � �x � x1, y � y1, z � z1� � 0

 n � PQ
\

� 0

n.
PQ

\

Q�x, y, z�

n � �a, b, c�

P�x1, y1, z1�

z � 5t.y � 1 � 2t,x � �2 � 3t,

P��2, 1, 0�,c � 5a � 3, b � 2,

v � PQ
\

� �1 � ��2�, 3 � 1, 5 � 0� � �3, 2, 5� � �a, b, c�

Q.P
Q�1, 3, 5�P��2, 1, 0�

�1, 3, 5�.��2, 1, 0�

784 Chapter 11 Vectors and the Geometry of Space

REMARK As varies over all real numbers, the parametric equations in Example 2
determine the points on the line. In particular, note that and give the
original points and �1, 3, 5�.��2, 1, 0�

t � 1t � 0�x, y, z�
t

z

x

y

n

P

Q

n · PQ = 0

The normal vector is orthogonal 
to each vector in the plane.
Figure 11.45

PQ
\

n

THEOREM 11.12 Standard Equation of a Plane in Space

The plane containing the point and having normal vector

can be represented by the standard form of the equation of a plane

a�x � x1� � b� y � y1� � c�z � z1� � 0.

n � �a, b, c�

�x1, y1, z1�
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Given the general form of the equation of a plane, it is easy to find a normal 
vector to the plane. Simply use the coefficients of and and write

Finding an Equation of a Plane in Three-Space

Find the general equation of the plane containing the points

and

Solution To apply Theorem 11.12, you need a point in the plane and a vector that is
normal to the plane. There are three choices for the point, but no normal vector is given.
To obtain a normal vector, use the cross product of vectors and extending from the
point to the points and as shown in Figure 11.46. The 
component forms of and are

and it follows that

is normal to the given plane. Using the direction numbers for and the point
you can determine an equation of the plane to be

Standard form

General form

Simplified general form

Two distinct planes in three-space either are parallel or intersect in a line. For two
planes that intersect, you can determine the angle between them from
the angle between their normal vectors, as shown in Figure 11.47. Specifically, if 
vectors and are normal to two intersecting planes, then the angle between the
normal vectors is equal to the angle between the two planes and is

Angle between two planes

Consequently, two planes with normal vectors and are

1. perpendicular when 

2. parallel when is a scalar multiple of n2.n1

n1 � n2 � 0.

n2n1

     cos � � �n1 � n2�
�n1� �n2�

.     

�n2n1

�0 � � � ��2�

 3x � 2y � 4z � 12 � 0.

 9x � 6y � 12z � 36 � 0

 9�x � 2� � 6� y � 1� � 12�z � 1� � 0

 a�x � x1� � b� y � y1� � c�z � z1� � 0

�x1, y1, z1� � �2, 1, 1�,
n

 � �a, b, c�
 � 9i � 6j � 12k

 � � i
�2
�4

j
3
0

k
0
3�

 n � u 	 v

v � ��2 � 2, 1 � 1, 4 � 1� � ��4, 0, 3�
u � �0 � 2, 4 � 1, 1 � 1� � ��2, 3, 0�

vu
��2, 1, 4�,�0, 4, 1��2, 1, 1�

vu

��2, 1, 4�.�0, 4, 1�,�2, 1, 1�,

n � �a, b, c�.

zy,x,
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REMARK In Example 3, check to see that each of the three original points satisfies
the equation

3x � 2y � 4z � 12 � 0.

(−2, 1, 4)

(0, 4, 1)(2, 1, 1)

2
3

4
5

5

4

3

2

1

2

−2

−3

x y

u

v

z

A plane determined by and 
Figure 11.46

vu

n2

n1
θ

θ

The angle between two planes
Figure 11.47

�
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Finding the Line of Intersection of Two Planes

Find the angle between the two planes

and

Then find parametric equations of their line of intersection (see Figure 11.48).

Figure 11.48

Solution Normal vectors for the planes are and 
Consequently, the angle between the two planes is determined as follows.

This implies that the angle between the two planes is You can find the line
of intersection of the two planes by simultaneously solving the two linear equations 
representing the planes. One way to do this is to multiply the first equation by and
add the result to the second equation.

Substituting back into one of the original equations, you can determine that
Finally, by letting you obtain the parametric equations

and Line of intersection

which indicate that 1, 4, and 7 are direction numbers for the line of intersection.

Note that the direction numbers in Example 4 can be obtained from the cross 
product of the two normal vectors as follows.

This means that the line of intersection of the two planes is parallel to the cross 
product of their normal vectors.

 � i � 4j � 7k

 � ��2
3

1
�2�i � �12 1

�2�j � �12 �2
3�k

 n1 	 n2 � � i
1
2

j
�2

3

k
1

�2�

z � 7ty � 4t,x � t,

t � z�7,x � z�7.
y � 4z�7

y �
4z
7

7y �  4z � 0

�2x
2x

�

�

4y
3y

�

�

2z
2z

�

�

0
0

x
2x

�

�

2y
3y

�

�

z
2z

�

�

0
0

�2

� 	 53.55
.

	 0.59409�
6


102
� ��6�


6 
17
 cos � � �n1 � n2�

�n1 � �n2 �

n2 � �2, 3, �2�.n1 � �1, �2, 1�

x

y

z

θ

Line of
intersection

Plane 2

Plane 1

2x � 3y � 2z � 0.x � 2y � z � 0
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REMARK The three-
dimensional rotatable graphs
that are available at
LarsonCalculus.com can help
you visualize surfaces such as
those shown in Figure 11.48. If
you have access to these graphs,
you should use them to help
your spatial intuition when
studying this section and other
sections in the text that deal
with vectors, curves, or 
surfaces in space.

9781285774770_1105.qxp  8/27/13  9:51 AM  Page 786

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sketching Planes in Space
If a plane in space intersects one of the coordinate planes, then the line of intersection
is called the trace of the given plane in the coordinate plane. To sketch a plane in space,
it is helpful to find its points of intersection with the coordinate axes and its traces in the
coordinate planes. For example, consider the plane

Equation of plane

You can find the trace by letting and sketching the line

trace

in the plane. This line intersects the -axis at and the axis at In
Figure 11.49, this process is continued by finding the trace and the trace, and then
shading the triangular region lying in the first octant.

-trace -trace -trace 

Traces of the plane 
Figure 11.49

If an equation of a plane has a missing 
variable, such as

then the plane must be parallel to the axis
represented by the missing variable, as shown 
in Figure 11.50. If two variables are missing 
from an equation of a plane, such as

then it is parallel to the coordinate plane
represented by the missing variables, as 
shown in Figure 11.51.

Plane is parallel Plane is parallel Plane is parallel
to the -plane. to the -plane. to the -plane.
Figure 11.51

xyxzyz
cz � d � 0by � d � 0ax � d � 0

x

y

z

d
c

 0, 0, − ))

x

y

z

d
b

0, −    , 0))
d
a

, 0, 0))x

y

−

z

ax � d � 0

2x � z � 1

3x � 2y � 4z � 12
3x � 4z � 122y � 4z � 123x � 2y � 12

�y � 0�:xz�x � 0�:yz�z � 0�:xy

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

y

x

(4, 0, 0)

(0, 6, 0)

z

xz-yz-
�0, 6, 0�.y-�4, 0, 0�xxy-

xy-3x � 2y � 12

z � 0xy-

3x � 2y � 4z � 12.

11.5 Lines and Planes in Space 787

y

x

z

1
2
, 0, 0( )

(0, 0, 1)

Plane: 2x + z = 1

Plane is parallel to the 
-axis.

Figure 11.50
y

2x � z � 1
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Distances Between Points, Planes, and Lines
Consider two types of problems involving distance in space: (1) finding the distance
between a point and a plane, and (2) finding the distance between a point and a line.
The solutions of these problems illustrate the versatility and usefulness of vectors in
coordinate geometry: the first problem uses the dot product of two vectors, and the 
second problem uses the cross product.

The distance between a point and a plane is the length of the shortest line 
segment connecting to the plane, as shown in Figure 11.52. For any point in the
plane, you can find this distance by projecting the vector onto the normal vector 
The length of this projection is the desired distance.

To find a point in the plane where let and
Then, from the equation you can conclude that the point

lies in the plane.

Finding the Distance Between a Point and a Plane

Find the distance between the point and the plane 

Solution You know that is normal to the plane. To find a point in the
plane, let and and obtain the point The vector from to is 

Using the Distance Formula given in Theorem 11.13 produces

From Theorem 11.13, you can determine that the distance between the point
and the plane is

or

Distance between a point and a plane

where is a point in the plane and d � ��ax1 � by1 � cz1�.P�x1, y1, z1�

     D � �ax0 � by0 � cz0 � d�

a2 � b2 � c2

     

D � �a�x0 � x1� � b�y0 � y1� � c�z0 � z1��

a2 � b2 � c2

ax � by � cz � d � 0Q�x0, y0, z0�

� ��3 � 5 � 8�

14

�
16

14

	 4.28. D � �PQ
\

� n�
�n �

� ���1, 5, �4� � �3, �1, 2��

9 � 1 � 4

 � ��1, 5, �4�.
 PQ

\

� �1 � 2, 5 � 0, �4 � 0�

QPP�2, 0, 0�.z � 0,y � 0
n � �3, �1, 2�

3x � y � 2z � 6.Q�1, 5, �4�

��
d
a

, 0, 0�
ax � d � 0,z � 0.

y � 0a � 0,ax � by � cz � d � 0,

n.PQ
\

PQ
QD
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THEOREM 11.13 Distance Between a Point and a Plane

The distance between a plane and a point (not in the plane) is

where is a point in the plane and is normal to the plane.nP

D � �projnPQ
\

� � �PQ
\

� n�
�n �

Q

REMARK In the solution to
Example 5, note that the choice
of the point is arbitrary. Try
choosing a different point in the
plane to verify that you obtain
the same distance.

P

D = ⎜⎜projn PQ⎜⎜

projn PQ
P

Q

D

n

The distance between a point and a
plane
Figure 11.52
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Finding the Distance Between Two Parallel Planes

Two parallel planes, and are shown in
Figure 11.53. To find the distance between the planes, choose a point in the first plane,
such as Then, from the second plane, you can determine that

and and conclude that the distance is

The formula for the distance between a point and a line in space resembles that for
the distance between a point and a plane—except that you replace the dot product with
the length of the cross product and the normal vector with a direction vector for 
the line.

Proof In Figure 11.54, let be the distance between the point and the line. Then
where is the angle between and By Property 2 of Theorem

11.8, you have Consequently,

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Finding the Distance Between a Point and a Line

Find the distance between the point and the line

and

Solution Using the direction numbers 3, and 4, a direction vector for the line is
To find a point on the line, let and obtain So,

and you can form the cross product

Finally, using Theorem 11.14, you can find the distance to be

See Figure 11.55.� 
6 	 2.45.�

174

29

 D �
� PQ

\

	 u �
�u �

PQ
\

	 u � � i
5
3

j
�1
�2

k
3
4� � 2i � 11j � 7k � �2, �11, �7�.

PQ
\

� �3 � ��2�, �1 � 0, 4 � 1� � �5, �1, 3�

P � ��2, 0, 1�.t � 0u � �3, �2, 4�.
�2,

z � 1 � 4t.y � �2t,x � �2 � 3t,

Q�3, �1, 4�

D � �PQ
\

� sin � �
�PQ

\

	 u �
�u �

 .

�u � �PQ
\

� sin � � �u 	 PQ
\

� � �PQ
\

	 u �.
PQ

\

.u�D � �PQ
\

� sin �,
QD

n

 �
16

56

�
8


14
	 2.14.

 � �6�2� � ��2��0� � �4��0� � 4�

62 � ��2�2 � 42

 D � �ax0 � by0 � cz0 � d�

a2 � b2 � c2

d � 4,c � 4,b � �2,a � 6,
�x0, y0, z0� � �2, 0, 0�.

6x � 2y � 4z � 4 � 0,3x � y � 2z � 6 � 0

11.5 Lines and Planes in Space 789

THEOREM 11.14 Distance Between a Point and a Line in Space

The distance between a point and a line in space is

where is a direction vector for the line and is a point on the line.Pu

D �
�PQ

\

	 u �
�u �

Q

D

(2, 0, 0)
2

3

−6

yx

z
3x − y + 2z − 6 = 0

6x − 2y + 4z + 4 = 0

The distance between the parallel
planes is approximately 2.14.
Figure 11.53

θ

D = ⎜⎜PQ⎜⎜ sin θ

Point

LineP
u

Q

The distance between a point and a line
Figure 11.54

x

y

D

4
3

2
1

−2

5
4

3
2

1

−2

6

5

3

2

−1

Q = (3, −1, 4)

z

The distance between the point and
the line is 
Figure 11.55


6 	 2.45.
Q
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790 Chapter 11 Vectors and the Geometry of Space

Checking Points on a Line In Exercises 1 and 2,
determine whether each point lies on the line.

1.

(a) (b)

2.

(a) (b)

Finding Parametric and Symmetric Equations In
Exercises 3–8, find sets of (a) parametric equations and 
(b) symmetric equations of the line through the point parallel
to the given vector or line (if possible). (For each line, write the
direction numbers as integers.)

Point Parallel to

3.

4.

5.

6.

7.

8.

Finding Parametric and Symmetric Equations In
Exercises 9–12, find sets of (a) parametric equations and 
(b) symmetric equations of the line through the two points (if 
possible). (For each line, write the direction numbers as integers.)

9. 10.

11. 12.

Finding Parametric Equations In Exercises 13–20, find a
set of parametric equations of the line.

13. The line passes through the point and is parallel to the 
-plane and the -plane.

14. The line passes through the point and is parallel to
the -plane and the -plane.

15. The line passes through the point and is perpendicular
to the plane given by 

16. The line passes through the point and is perpendicular
to the plane given by 

17. The line passes through the point and is parallel
to 

18. The line passes through the point and is parallel
to 

19. The line passes through the point and is parallel to the
line 

20. The line passes through the point and is parallel to
the line 

Using Parametric and Symmetric Equations In
Exercises 21–24, find the coordinates of a point on the line
and a vector parallel to the line.

21.

22.

23. 24.

Determining Parallel Lines In Exercises 25–28,
determine whether any of the lines are parallel or identical.

25.

26.

27.

28.

Finding a Point of Intersection In Exercises 29–32,
determine whether the lines intersect, and if so, find the point
of intersection and the cosine of the angle of intersection.

29.

30.

31.

32.
x � 3

2
� y � 5 �

z � 2
4

x � 2
�3

�
y � 2

6
� z � 3,

x � 1
4

� y � 2 �
z � 3
�3

x
3

�
y � 2
�1

� z � 1,

z � �s � 1y � 2s � 4,x � 3s � 1,

z � 2t � 4y � 4t � 1,x � �3t � 1,

z � s � 1y � 2s � 3,x � 2s � 2,

z � �t � 1y � 3,x � 4t � 2,

x � 3
2

�
y � 1

4
�

z � 2
�1

L4:

x � 2
1

�
y � 1

0.5
�

z � 3
1

L3:

x � 1
4

�
y � 1

2
�

z � 3
4

L2:

x � 3
2

�
y � 2

1
�

z � 2
2

L1:

x � 2
�2

�
y � 3

1
�

z � 4
1.5

L4:

x � 4
�8

�
y � 1

4
�

z � 18
�6

L3:

x � 7
2

�
y � 4

1
�

z � 6
5

L2:

x � 8
4

�
y � 5
�2

�
z � 9

3
L1:

z � 8 � 3ty � 1 � t,x � 5 � 2t,L4:

z � 1 � 4ty � 3 � 10t,x � �1 � 2t,L3:

z � 3ty � �1 � t,x � 1 � 2t,L2:

z � 1 � 2ty � �6t,x � 3 � 2t,L1:

z � 5 � 6ty � 3 � 4t,x � �4 � 6t,L4:

z � 7 � 8ty � 3 � 4t,x � 10 � 6t,L3:

z � 13 � 8ty � 2 � 4t,x � 6t,L2:

z � 5 � 4ty � �2 � 2t,x � 6 � 3t,L1:

x � 3
5

�
y
8

�
z � 3

6
x � 7

4
�

y � 6
2

� z � 2

z � 4 � 3ty � 5 � t,x � 4t,

z � �2y � �1 � 2t,x � 3 � t,

v
P

z � 0.y � �4 � 2t,x � 5 � 2t,
��6, 0, 8�

z � �2 � t.y � 1 � t,x � �t,
�2, 1, 2�

v � 5i � j.
��1, 4, �3�

v � �2, �1, 3�.
�5, �3, �4�

�x � 2y � z � 5.
��4, 5, 2�

3x � 2y � z � 6.
�2, 3, 4�

yzxy
��4, 5, 2�

yzxz
�2, 3, 4�

�0, 0, 25�, �10, 10, 0��7, �2, 6�, ��3, 0, 6�
�0, 4, 3�, ��1, 2, 5��5, �3, �2�, ��2

3, 23, 1�

x � 1
3

�
y � 1
�2

� z � 3��3, 5, 4�

x � 3 � 3t, y � 5 � 2t, z � �7 � t�1, 0, 1�
v � 6j � 3k��3, 0, 2�
v � 2i � 4j � 2k��2, 0, 3�
v � ��2, 52, 1��0, 0, 0�
v � �3, 1, 5��0, 0, 0�

�1, �1, �3��7, 23, 0�

x � 3
2

�
y � 7

8
� z � 2

�2, 3, 5��0, 6, 6�
x � �2 � t, y � 3t, z � 4 � t

11.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

9781285774770_1105.qxp  8/27/13  9:51 AM  Page 790

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.5 Lines and Planes in Space 791

Checking Points on a Plane In Exercises 33 and 34,
determine whether the plane passes through each point.

33.

(a) (b)

34.

(a) (b)

Finding an Equation of a Plane In Exercises 35–40, find
an equation of the plane passing through the point perpendicular
to the given vector or line.

Point Perpendicular to

35.

36.

37.

38.

39.

40.

Finding an Equation of a Plane In Exercises 41–52, find
an equation of the plane.

41. The plane passes through and 

42. The plane passes through and 

43. The plane passes through and 

44. The plane passes through the point and is parallel to
the plane.

45. The plane passes through the point and is parallel to
the plane.

46. The plane contains the axis and makes an angle of with
the positive axis.

47. The plane contains the lines given by

and

48. The plane passes through the point and contains the
line given by

49. The plane passes through the points and 
and is perpendicular to the plane 

50. The plane passes through the points and 
and is perpendicular to the plane 

51. The plane passes through the points and 
and is parallel to the axis.

52. The plane passes through the points and 
and is parallel to the axis.

Finding an Equation of a Plane In Exercises 53–56, find
an equation of the plane that contains all the points that are
equidistant from the given points.

53. 54.

55. 56.

Comparing Planes In Exercises 57–62, determine whether
the planes are parallel, orthogonal, or neither. If they are 
neither parallel nor orthogonal, find the angle of intersection.

57. 58.

59. 60.

61. 62.

Sketching a Graph of a Plane In Exercises 63–70, sketch
a graph of the plane and label any intercepts.

63. 64.

65. 66.

67. 68.

69. 70.

Parallel Planes In Exercises 71–74, determine whether any
of the planes are parallel or identical.

71. 72.

73.

74.

Intersection of Planes In Exercises 75 and 76, (a) find the
angle between the two planes, and (b) find a set of parametric
equations for the line of intersection of the planes.

75. 76.

Intersection of a Plane and a Line In Exercises 77–80,
find the point(s) of intersection (if any) of the plane and the
line. Also, determine whether the line lies in the plane.

77.

78.
x � 1

4
�

y
2

�
z � 3

6
2x � 3y � �5,

x �
1
2

�
y � �3�2�

�1
�

z � 1
2

2x � 2y � z � 12,

�x � y � 5z � 5x � 4y � 2z � 0

6x � 3y � z � 53x � 2y � z � 7

12x � 18y � 6z � 5P4:

�20x � 30y � 10z � 9P3:

6x � 9y � 3z � 2P2:

�60x � 90y � 30z � 27P1:

75x � 50y � 125z � 250P4:

�3x � 2y � 5z � 8P3:

�6x � 4y � 10z � 5P2:

3x � 2y � 5z � 10P1:

�4x � 2y � 6z � 11P4:3x � 2y � 2z � 4P4:

8x � 4y � 12z � 5P3:6x � 4y � 4z � 9P3:

3x � 5y � 2z � 6P2:15x � 6y � 24z � 17P2:

2x � y � 3z � 8P1:�5x � 2y � 8z � 6P1:

z � 8x � 5

2x � y � 8x � z � 6

2x � y � z � 42x � y � 3z � 4

3x � 6y � 2z � 64x � 2y � 6z � 12

4x � y � 8z � 105x � 25y � 5z � �3

2x � z � 1x � 5y � z � 1

x � 4y � 2z � 05x � y � z � 4

3x � 2y � z � 7x � 3y � 6z � 4

�9x � 3y � 12z � 4x � 4y � 7z � 1

3x � y � 4z � 35x � 3y � z � 4

�2, �1, 6���5, 1, �3�,�6, �2, 4���3, 1, 2�,
�2, 0, 1��1, 0, 2�,�0, 2, 2��2, 2, 0�,

z-
��3, 5, 7��4, 2, 1�

x-
�2, 5, 6��1, �2, �1�

6x � 7y � 2z � 10.
�3, 1, �5��3, 2, 1�

2x � 3y � z � 3.
��1, 1, �1��2, 2, 1�

x
2

�
y � 4
�1

� z.

�2, 2, 1�

x � 2
�3

�
y � 1

4
�

z � 2
�1

.

x � 1
�2

� y � 4 � z

x-
��6y-

xy-
�1, 2, 3�

yz-
�1, 2, 3�

��1, �2, 2�.�3, 2, 1�,�1, 2, 3�,
�1, �2, �2�.�2, 1, 5�,�3, �1, 2�,

��3, �1, 5�.�2, 0, 3�,�0, 0, 0�,

x � 1
4

� y � 2 �
z � 3
�3

�3, 2, 2�

x � �1 � 2t, y � 5 � t, z � 3 � 2t��1, 4, 0�
n � �3i � 2k�0, 0, 0�
n � 2i � 3j � k�3, 2, 2�
n � k�0, �1, 4�
n � j�1, 3, �7�

��1, 5, �1��3, 6, �2�
2x � y � 3z � 6 � 0

�5, 2, 2���7, 2, �1�
x � 2y � 4z � 1 � 0
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792 Chapter 11 Vectors and the Geometry of Space

79.

80.

Finding the Distance Between a Point and a Plane In
Exercises 81–84, find the distance between the point and the
plane.

81. 82.

83. 84.

Finding the Distance Between Two Parallel Planes In
Exercises 85–88, verify that the two planes are parallel, and
find the distance between the planes.

85. 86.

87. 88.

Finding the Distance Between a Point and a Line In
Exercises 89–92, find the distance between the point and the
line given by the set of parametric equations.

89.

90.

91.

92.

Finding the Distance Between Two Parallel Lines In
Exercises 93 and 94, verify that the lines are parallel, and find
the distance between them.

93.

94.

101. Modeling Data Personal consumption expenditures (in
billions of dollars) for several types of recreation from 
2005 through 2010 are shown in the table, where is the
expenditures on amusement parks and campgrounds, is the
expenditures on live entertainment (excluding sports), and 
is the expenditures on spectator sports. (Source: U.S. Bureau
of Economic Analysis)

A model for the data is given by

(a) Complete a fourth row in the table using the model to
approximate for the given values of and Compare
the approximations with the actual values of 

(b) According to this model, increases in expenditures on 
recreation types and would correspond to what kind
of change in expenditures on recreation type z?

yx

z.
y.xz

0.46x � 0.30y � z � 4.94.

Year 2005 2006 2007 2008 2009 2010

x 36.4 39.0 42.4 44.7 43.0 45.2

y 15.3 16.6 17.4 17.5 17.0 17.3

z 16.4 18.1 20.0 20.5 20.1 21.4

z
y

x

z � �8ty � 3 � 6t,x � �1 � 4t,L2:

z � 1 � 12ty � �2 � 9t,x � 3 � 6t,L1:

z � 4 � 3ty � 1 � 6t,x � 3t,L2:

z � 4 � ty � 3 � 2t,x � 2 � t,L1:

z � 1 � ty � 1 � 3t,x � 3,�4, �1, 5�;
z � �2ty � 2 � t,x � 1 � t,��2, 1, 3�;

x � 2t,  y � t � 3,  z � 2t � 2�1, �2, 4�;
x � 4t � 2,  y � 3,  z � �t � 1�1, 5, �2�;

2x � 4z � 106x � 12y � 14z � 25

2x � 4z � 4�3x � 6y � 7z � 1

4x � 4y � 9z � 18x � 3y � 4z � 6

4x � 4y � 9z � 7x � 3y � 4z � 10

3x � 4y � 5z � 62x � y � z � 5

�1, 3, �1��2, 8, 4�
5x � y � z � 92x � 3y � z � 12

�0, 0, 0��0, 0, 0�

x � 4
2

�
y � 1
�3

�
z � 2

5
5x � 3y � 17,

x � 1
3

�
y � 1
�2

� z � 32x � 3y � 10,

WRITING ABOUT CONCEPTS
95. Parametric and Symmetric Equations Give the

parametric equations and the symmetric equations of a line
in space. Describe what is required to find these equations.

96. Standard Equation of a Plane in Space Give the
standard equation of a plane in space. Describe what is
required to find this equation.

97. Intersection of Two Planes Describe a method of
finding the line of intersection of two planes.

98. Parallel and Perpendicular Planes Describe a method
for determining when two planes,
and are (a) parallel and (b)
perpendicular. Explain your reasoning.

a2x � b2y � c2z � d2 � 0,
a1x � b1y � c1z � d1 � 0

WRITING ABOUT CONCEPTS (continued)
99. Normal Vector Let and be nonparallel lines that

do not intersect. Is it possible to find a nonzero vector 
such that is normal to both and ? Explain your 
reasoning.

L2L1v
v

L2L1

100. HOW DO YOU SEE IT? Match the general
equation with its graph. Then state what axis or
plane the equation is parallel to.

(a) (b)

(c) (d)

(i) (ii)

(iii) (iv)

x
y

z

x
y

z

x
y

z

x
y

z

ax � cz � d � 0cz � d � 0

ax � d � 0ax � by � d � 0
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11.5 Lines and Planes in Space 793

102. Mechanical Design The figure shows a chute at the top
of a grain elevator of a combine that funnels the grain into a
bin. Find the angle between two adjacent sides.

103. Distance Two insects are crawling along different lines in
three-space. At time (in minutes), the first insect is at the
point on the line 
Also, at time the second insect is at the point on the
line Assume that distances are
given in inches.

(a) Find the distance between the two insects at time 

(b) Use a graphing utility to graph the distance between the
insects from to 

(c) Using the graph from part (b), what can you conclude
about the distance between the insects?

(d) How close to each other do the insects get?

104. Finding an Equation of a Sphere Find the standard
equation of the sphere with center that is tangent
to the plane given by 

105. Finding a Point of Intersection Find the point of
intersection of the plane and the line
through that is perpendicular to this plane.

106. Finding the Distance Between a Plane and a Line

Show that the plane is parallel to the line
and find the distance

between them.

107. Finding a Point of Intersection Find the point of
intersection of the line through and and
the plane given by 

108. Finding Parametric Equations Find a set of parametric
equations for the line passing through the point 
that is parallel to the plane given by and 
perpendicular to the line 

True or False? In Exercises 109–114, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

109. If is any vector in the plane given by
then 

110. Every two lines in space are either intersecting or parallel.

111. Two planes in space are either intersecting or parallel.

112. If two lines and are parallel to a plane then and 
are parallel.

113. Two planes perpendicular to a third plane in space are parallel.

114. A plane and a line in space are either intersecting or parallel.

L2L1P,L2L1

a1a2 � b1b2 � c1c2 � 0.a2x � b2y � c2z � d2 � 0,
v � a1i � b1j � c1k

z � 1 � t.y � 1 � t,x � t,
x � y � z � 5

�1, 0, 2�

x � y � z � 2.
�3, �4, 2��1, �3, 1�

z � 4,y � �1 � 4t,x � �2 � 2t,
2x � y � 3z � 4

�5, 4, �3�
3x � y � 4z � 7

2x � 4y � 3z � 8.
��3, 2, 4�

t � 10.t � 0

t � 0.

z � 2t.y � 2 � t,x � 1 � t,
�x, y, z�t,

z � 3 � t.y � 8 � t,x � 6 � t,�x, y, z�
t

6 in.
6 in.

8 in.

8 in.

8 in.

You have learned two distance formulas in this section—one for
the distance between a point and a plane, and one for the distance
between a point and a line. In this project, you will study a third
distance problem—the distance between two skew lines. Two lines
in space are skew if they are neither parallel nor intersecting (see
figure).

(a) Consider the following two lines in space.

(i) Show that these lines are not parallel.

(ii) Show that these lines do not intersect, and therefore are
skew lines.

(iii) Show that the two lines lie in parallel planes.

(iv) Find the distance between the parallel planes from part
(iii). This is the distance between the original skew lines.

(b) Use the procedure in part (a) to find the distance between the
lines.

(c) Use the procedure in part (a) to find the distance between the
lines.

(d) Develop a formula for finding the distance between the skew
lines.

L1

L2

L2: x � x2 � a2s,  y � y2 � b2s,  z � z2 � c2s

L1: x � x1 � a1t,  y � y1 � b1t,  z � z1 � c1t

L2: x � 1 � 4s,  y � �2 � s,  z � �3 � 3s

L1: x � 3t,  y � 2 � t,  z � �1 � t

L2: x � 1 � s,  y � 4 � s,  z � �1 � s

L1: x � 2t,  y � 4t,  z � 6t

L2: x � 4 � s,  y � �6 � 8s,  z � 7 � 3s

L1: x � 4 � 5t,  y � 5 � 5t,  z � 1 � 4t

Distances in Space
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794 Chapter 11 Vectors and the Geometry of Space

11.6 Surfaces in Space

Recognize and write equations of cylindrical surfaces.
Recognize and write equations of quadric surfaces.
Recognize and write equations of surfaces of revolution.

Cylindrical Surfaces
The first five sections of this chapter contained the vector portion of the preliminary
work necessary to study vector calculus and the calculus of space. In this and the next
section, you will study surfaces in space and alternative coordinate systems for space.
You have already studied two special types of surfaces.

1. Spheres: Section 11.2

2. Planes: Section 11.5

A third type of surface in space is a cylindrical surface, or simply a cylinder. To
define a cylinder, consider the familiar right circular cylinder shown in Figure 11.56.
The cylinder was generated by a vertical line moving around the circle in
the plane. This circle is a generating curve for the cylinder, as indicated in the next
definition.

Without loss of generality, you can 
assume that lies in one of the three 
coordinate planes. Moreover, this text 
restricts the discussion to right cylinders––
cylinders whose rulings are perpendicular 
to the coordinate plane containing 
as shown in Figure 11.57. Note that the 
rulings intersect and are parallel to the 
line 

For the right circular cylinder shown in 
Figure 11.56, the equation of the generating 
curve in the -plane is

To find an equation of the cylinder, note that you can generate any one of the rulings by
fixing the values of and and then allowing to take on all real values. In this sense,
the value of is arbitrary and is, therefore, not included in the equation. In other words,
the equation of this cylinder is simply the equation of its generating curve.

Equation of cylinder in spacex2 � y2 � a2

z
zyx

x2 � y2 � a2.

xy

L.
C

C,

C

xy-
x2 � y2 � a2

ax � by � cz � d � 0

�x � x0�2 � �y � y0�2 � �z � z0�2 � r2

Definition of a Cylinder

Let be a curve in a plane and let be a line not in a parallel plane. The set
of all lines parallel to and intersecting is a cylinder. The curve is the 
generating curve (or directrix) of the cylinder, and the parallel lines are
rulings.

CCL
LC

x

z

y

Rulings intersect C
and are parallel to L.

L intersects C.

Generating
curve C

Right cylinder: A cylinder whose rulings
are perpendicular to the coordinate plane
containing 
Figure 11.57

C

y

x

z

Right circular cylinder:
x2 + y2 = a2

Rulings are parallel to -axis
Figure 11.56

z

Equations of Cylinders

The equation of a cylinder whose rulings are parallel to one of the coordinate 
axes contains only the variables corresponding to the other two axes.
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Sketching a Cylinder

Sketch the surface represented by each equation.

a. b.

Solution

a. The graph is a cylinder whose generating curve, is a parabola in the plane.
The rulings of the cylinder are parallel to the axis, as shown in Figure 11.58(a).

b. The graph is a cylinder generated by the sine curve in the plane. The rulings are
parallel to the axis, as shown in Figure 11.58(b).

(a) Rulings are parallel to -axis. (b) Rulings are parallel to -axis.

Figure 11.58

Quadric Surfaces
The fourth basic type of surface in space is a quadric surface. Quadric surfaces are the
three-dimensional analogs of conic sections.

The intersection of a surface with a plane is called the trace of the surface in 
the plane. To visualize a surface in space, it is helpful to determine its traces in some
well-chosen planes. The traces of quadric surfaces are conics. These traces, together
with the standard form of the equation of each quadric surface, are shown in the table
on the next two pages.

In the table on the next two pages, only one of several orientations of each quadric
surface is shown. When the surface is oriented along a different axis, its standard 
equation will change accordingly, as illustrated in Examples 2 and 3. The fact that the
two types of paraboloids have one variable raised to the first power can be helpful in
classifying quadric surfaces. The other four types of basic quadric surfaces have 
equations that are of second degree in all three variables.

yx

z

y

π

1

x

Cylinder: z = sin x

Generating curve C
lies in xz-plane

z

x

y

Cylinder: z = y2

Generating curve C
lies in yz-plane

y-
xz-

x-
yz-z � y2,

0 � x � 2�z � sin x,z � y2

11.6 Surfaces in Space 795

Quadric Surface

The equation of a quadric surface in space is a second-degree equation in 
three variables. The general form of the equation is

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one 
sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and
hyperbolic paraboloid.

Ax2 � By2 � Cz2 � Dxy � Exz � Fyz � Gx � Hy � Iz � J � 0.
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796 Chapter 11 Vectors and the Geometry of Space

y
x

z Ellipsoid

Trace Plane

Ellipse Parallel to -plane
Ellipse Parallel to -plane
Ellipse Parallel to -plane

The surface is a sphere when
a � b � c � 0.

yz
xz
xy

x2

a2 �
y2

b2 �
z2

c2 � 1

y
x

z

xy-trace

yz-trace xz-trace

y

x

z Hyperboloid of One Sheet

Trace Plane

Ellipse Parallel to -plane
Hyperbola Parallel to -plane
Hyperbola Parallel to -plane

The axis of the hyperboloid 
corresponds to the variable whose
coefficient is negative.

yz
xz
xy

x2

a2 �
y2

b2 �
z2

c2 � 1

y

x

z

xy-trace

yz-trace
xz-trace

x y

z Hyperboloid of Two Sheets

Trace Plane

Ellipse Parallel to -plane
Hyperbola Parallel to -plane
Hyperbola Parallel to -plane

The axis of the hyperboloid 
corresponds to the variable whose
coefficient is positive. There is no
trace in the coordinate plane 
perpendicular to this axis.

yz
xz
xy

z2

c2 �
x2

a2 �
y2

b2 � 1

z

x y

no -tracexy

yz-trace xz-trace

parallel to
xy-plane
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11.6 Surfaces in Space 797

x

y

z Elliptic Cone

Trace Plane

Ellipse Parallel to -plane
Hyperbola Parallel to -plane
Hyperbola Parallel to -plane

The axis of the cone corresponds to the
variable whose coefficient is negative.
The traces in the coordinate planes
parallel to this axis are intersecting
lines.

yz
xz
xy

x2

a2 �
y2

b2 �
z2

c2 � 0

x

z

y

xy-trace
(one point)

yz-trace

parallel to
xy-plane

xz-trace

x
y

z Elliptic Paraboloid

Trace Plane

Ellipse Parallel to -plane
Parabola Parallel to -plane
Parabola Parallel to -plane

The axis of the paraboloid corresponds
to the variable raised to the first power.

yz
xz
xy

z �
x2

a2 �
y2

b2

x
y

z
xz-traceyz-trace

xy-trace
(one point)

parallel to 
xy-plane

x

y

z Hyperbolic Paraboloid

Trace Plane

Hyperbola Parallel to -plane
Parabola Parallel to -plane
Parabola Parallel to -plane

The axis of the paraboloid 
corresponds to the variable raised to
the first power.

yz
xz
xy

z �
y2

b2 �
x2

a2

x

y

z
yz-trace

xz-trace

parallel to
xy-plane
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To classify a quadric surface, begin by writing the equation of the surface in 
standard form. Then, determine several traces taken in the coordinate planes taken in
planes that are parallel to the coordinate planes.

Sketching a Quadric Surface

Classify and sketch the surface

Solution Begin by writing the equation in standard form.

Write original equation.

Divide by 

Standard form

From the table on pages 796 and 797, you can conclude that the surface is a hyperboloid
of two sheets with the axis as its axis. To sketch the graph of this surface, it helps to
find the traces in the coordinate planes.

trace Hyperbola

trace No trace

trace Hyperbola

The graph is shown in Figure 11.59.

Sketching a Quadric Surface

Classify and sketch the surface

Solution Because is raised only to the first power, the surface is a paraboloid. The
axis of the paraboloid is the axis. In standard form, the equation is

Standard form

Some convenient traces are listed below.

trace Parabola

trace Parabola

parallel to plane Ellipse

The surface is an elliptic paraboloid, as shown in Figure 11.60.

Some second-degree equations in and do not represent any of the basic types
of quadric surfaces. For example, the graph of

Single point

is a single point, and the graph of

Right circular cylinder

is a right circular cylinder.

x2 � y2 � 1

 x2 � y2 � z2 � 0

zy,x,

y2

4
�

z2

1
� 1�x � 4�:yz-

x � 4z2�y � 0�:xz-

x � y2�z � 0�:xy-

x � y2 � 4z2.

x-
x

x � y2 � 4z2 � 0.

 
y2

4
�

z2

1
� 1�x � 0�:yz-

 
x2

3
�

z2

1
� �1�y � 0�:xz-

 
y2

4
�

x2

3
� 1�z � 0�:xy-

y-

 
y2

4
�

x2

3
�

z2

1
� 1

�12. 
x2

�3
�

y2

4
� z2 � 1 � 0

 4x2 � 3y2 � 12z2 � 12 � 0

4x2 � 3y2 � 12z2 � 12 � 0.

or

798 Chapter 11 Vectors and the Geometry of Space

y

z

Hyperboloid of two sheets:

y2 x2

4 3
−       − z2 = 1

4
3

2 1 2

1

2

3

x

y2 z2

4 1
−       = 1

y2 x2

4 3
−       = 1

Figure 11.59

y

z

x

10

4
2

2
−4

y2 z2

4 1
+       = 1

Elliptic paraboloid:
x = y2 + 4z2

x = 4z2

x = y2

Figure 11.60
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For a quadric surface not centered at the origin, you can form the standard 
equation by completing the square, as demonstrated in Example 4.

A Quadric Surface Not Centered at the Origin

See LarsonCalculus.com for an interactive version of this type of example.

Classify and sketch the surface 

Solution Begin by grouping terms and factoring where possible.

Next, complete the square for each variable and write the equation in standard form.

From this equation, you can see that the quadric surface is an ellipsoid that is centered
at Its graph is shown in Figure 11.61.�2, �1, 1�.

 
�x � 2�2

4
�

�y � 1�2

2
�

�z � 1�2

4
� 1

 �x � 2�2 � 2�y � 1�2 � �z � 1�2 � 4

 �x2 � 4x � 4� � 2� y2 � 2y � 1� � �z2 � 2z � 1� � �3 � 4 � 2 � 1

 �x2 � 4x �  � � 2� y2 � 2y �  � � �z2 � 2z �  � � �3

x2 � 4x � 2�y2 � 2y� � z2 � 2z � �3

x2 � 2y2 � z2 � 4x � 4y � 2z � 3 � 0.

11.6 Surfaces in Space 799

TECHNOLOGY A 3-D graphing utility can help you visualize a surface in
space.* Such a graphing utility may create a three-dimensional graph by sketching
several traces of the surface and then applying a “hidden-line” routine that blocks out
portions of the surface that lie behind other portions of the surface. Two examples of
figures that were generated by Mathematica are shown below.

Elliptic paraboloid Hyperbolic paraboloid

Using a graphing utility to graph a surface in space requires practice. For one
thing, you must know enough about the surface to be able to specify a viewing
window that gives a representative view of the surface. Also, you can often improve
the view of a surface by rotating the axes. For instance, note that the elliptic
paraboloid in the figure is seen from a line of sight that is “higher” than the line of
sight used to view the hyperbolic paraboloid.

z �
y 2

16
�

x2

16
x �

y2

2
�

z2

2

y

x

Generated by Mathematica

z

x

y

Generated by Mathematica

z

* Some 3-D graphing utilities require surfaces to be entered with parametric equations.
For a discussion of this technique, see Section 15.5.

y

x

z

1

5

3

−1

(2, −1, 1)

(x − 2)2 (y + 1)2 (z − 1)2

4 2 4
+ + = 1

An ellipsoid centered at 
Figure 11.61

�2, �1, 1�
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Surfaces of Revolution
The fifth special type of surface you will study is a surface of revolution. In Section
7.4, you studied a method for finding the area of such a surface. You will now look at
a procedure for finding its equation. Consider the graph of the radius function

Generating curve

in the plane. When this graph is revolved about the axis, it forms a surface of 
revolution, as shown in Figure 11.62. The trace of the surface in the plane is a
circle whose radius is and whose equation is 

Circular trace in plane:

Replacing with produces an equation that is valid for all values of In a similar
manner, you can obtain equations for surfaces of revolution for the other two axes, and
the results are summarized as follows.

Finding an Equation for a Surface of Revolution

Find an equation for the surface of revolution formed by revolving (a) the graph of
about the -axis and (b) the graph of about the -axis.

Solution

a. An equation for the surface of revolution formed by revolving the graph of

Radius function

about the axis is

Revolved about the axis

Substitute for 

b. To find an equation for the surface formed by revolving the graph of about
the axis, solve for in terms of to obtain

Radius function

So, the equation for this surface is

Revolved about the axis

Substitute for 

Equation of surface

The graph is shown in Figure 11.63.

x2 � z2 �
1
9

y3.

r �y�.1
3 y3�2x2 � z2 � �1

3
y3�2�

2

y-x2 � z2 � �r�y��2

x �
1
3

y3�2 � r� y�.

yxy-
9x2 � y3

r �z�.1�zx2 � y2 � �1
z�

2

.

z-x2 � y2 � �r�z��2

z-

y �
1
z

y9x2 � y3zy � 1�z

z.zz0

z � z0x2 � y2 � �r�z0��2.

r�z0�
z � z0

z-yz-

y � r�z�

800 Chapter 11 Vectors and the Geometry of Space

Surface of Revolution

If the graph of a radius function is revolved about one of the coordinate 
axes, then the equation of the resulting surface of revolution has one of the 
forms listed below.

1. Revolved about the axis:

2. Revolved about the axis:

3. Revolved about the axis: x2 � y2 � �r�z��2z-

x2 � z2 � �r�y��2y-

y2 � z2 � �r�x��2x-

r

y

x

(x, y, z)
r z( )

(0, 0, z)

(0, r (z), z)

z Generating curve
y = r (z)

Circular
cross section

Figure 11.62

x
y

z

x2 + z2 = y31
9

Surface:

Generating curve
9x2 = y3

Figure 11.63
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The generating curve for a surface of revolution is not unique. For instance, the 
surface

can be formed by revolving either the graph of

about the axis or the graph of

about the axis, as shown in Figure 11.64.

Figure 11.64

Finding a Generating Curve

Find a generating curve and the axis of revolution for the surface

Solution The equation has one of the forms listed below.

Revolved about axis

Revolved about axis

Revolved about axis

Because the coefficients of and are equal,
you should choose the third form and write

The axis is the axis of revolution. You can
choose a generating curve from either of the
traces

Trace in plane

or

Trace in plane

For instance, using the first trace, the generating
curve is the semiellipse

Generating curve

The graph of this surface is shown in 
Figure 11.65.

x � 	9 � 3y2.

yz-z2 � 9 � 3y2.

xy-x2 � 9 � 3y2

y-

x2 � z2 � 9 � 3y2.

z2x2

y-x2 � z2 � �r�y��2

x-y2 � z2 � �r�x��2

z-x2 � y2 � �r�z��2

x2 � 3y2 � z2 � 9.

x

y

z Generating curve
in yz-plane
z = e−y

x

y

z

Surface:
x2 + z2 = e−2y

Generating curve
in xy-plane
x = e−y

y-

z � e�y

y-

x � e�y

x2 � z2 � e�2y
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y

x

z

Surface:
x2 + 3y2 + z2 = 9

Generating curve
in yz-plane
z =     9 − 3y2

Generating curve
in xy-plane
x =     9 − 3y2

Figure 11.65
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802 Chapter 11 Vectors and the Geometry of Space

Matching In Exercises 1–6, match the equation with its
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

1. 2.

3. 4.

5. 6.

Sketching a Surface in Space In Exercises 7–12,
describe and sketch the surface.

7. 8.

9. 10.

11. 12.

Sketching a Quadric Surface In Exercises 13–24, classify
and sketch the quadric surface. Use a computer algebra system
or a graphing utility to confirm your sketch.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

Finding an Equation of a Surface of Revolution In
Exercises 31–36, find an equation for the surface of revolution
formed by revolving the curve in the indicated coordinate
plane about the given axis.

Equation Coordinate Axis of
of Curve Plane Revolution

31. plane axis

32. plane axis

33. plane axisz-yz-z � 2y

y-yz-z � 3y

y-yz-z2 � 4y

x2 � 2y2 � 2z2z2 � x2 �
y2

9

3z � �y2 � x2x2 � y2 � z � 0

z � x2 � 4y2x2 � y � z2 � 0

z2 � x2 �
y2

4
� 14x2 � y2 � z2 � 1

�8x2 � 18y2 � 18z2 � 216x2 � y2 � 16z2 � 4

x2

16
�

y2

25
�

z2

25
� 1x2 �

y2

4
� z2 � 1

y2 � z2 � 164x2 � y2 � 4

y2 � z � 6y2 � z2 � 9

z � 2y � 5

4x2 � y2 � 4z � 04x2 � 4y � z2 � 0

y2 � 4x2 � 9z24x2 � y2 � 4z2 � 4

15x2 � 4y2 � 15z2 � �4
x2

9
�

y2

16
�

z2

9
� 1

y
4

5
4

2
3

x

z

y
2

2
1

3

−3

3
4 4

x

z

6

4

2

2
y

x

z

x
y5

−5

4

4

z

y

x

2
4

2

3

4
−3

z

x
y5 6

4

6

3

z

11.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

WRITING ABOUT CONCEPTS
25. Cylinder State the definition of a cylinder.

26. Trace of a Surface What is meant by the trace of a
surface? How do you find a trace?

27. Quadric Surfaces Identify the six quadric surfaces
and give the standard form of each.

28. Classifying an Equation What does the equation
represent in the -plane? What does it represent in

three-space?

29. Classifying an Equation What does the equation
represent in the -plane? What

does it represent in three-space?
xy4x2 � 6y2 � 3z2 � 12

xzz � x2

30. HOW DO YOU SEE IT? The four figures are
graphs of the quadric surface Match
each of the four graphs with the point in space
from which the paraboloid is viewed. The four
points are and

(a) (b)

(c) (d)

x

z

y

x

x y

zz

y

�10, 10, 20�.
�20, 0, 0�,�0, 20, 0�,�0, 0, 20�,

z � x2 � y2.
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11.6 Surfaces in Space 803

Equation Coordinate Axis of
of Curve Plane Revolution

34. plane axis

35. plane axis

36. plane axis

Finding a Generating Curve In Exercises 37 and 38, find
an equation of a generating curve given the equation of its 
surface of revolution.

37. 38.

Finding the Volume of a Solid In Exercises 39 and 40,
use the shell method to find the volume of the solid below the
surface of revolution and above the -plane.

39. The curve in the plane is revolved about the 
axis.

40. The curve in the plane is revolved
about the axis.

Analyzing a Trace In Exercises 41 and 42, analyze the trace
when the surface 

is intersected by the indicated planes.

41. Find the lengths of the major and minor axes and the 
coordinates of the foci of the ellipse generated when the 
surface is intersected by the planes given by

(a) and (b)

42. Find the coordinates of the focus of the parabola formed when
the surface is intersected by the planes given by

(a) and (b)

Finding an Equation of a Surface In Exercises 43 and
44, find an equation of the surface satisfying the conditions,
and identify the surface.

43. The set of all points equidistant from the point and the
plane 

44. The set of all points equidistant from the point and the
plane

46. Machine Design The top of a rubber bushing designed to
absorb vibrations in an automobile is the surface of revolution
generated by revolving the curve 

for in the -plane about the -axis.

(a) Find an equation for the surface of revolution.

(b) All measurements are in centimeters and the bushing is set
on the -plane. Use the shell method to find its volume.

(c) The bushing has a hole of diameter 1 centimeter through
its center and parallel to the axis of revolution. Find the
volume of the rubber bushing.

47. Using a Hyperbolic Paraboloid Determine the 
intersection of the hyperbolic paraboloid 

with the plane Assume 

48. Intersection of Surfaces Explain why the curve of
intersection of the surfaces 

and

lies in a plane.

True or False? In Exercises 49–52, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

49. A sphere is an ellipsoid.

50. The generating curve for a surface of revolution is unique.

51. All traces of an ellipsoid are ellipses.

52. All traces of a hyperboloid of one sheet are hyperboloids.

53. Think About It Three types of classic “topological”
surfaces are shown below. The sphere and torus have both an
“inside” and an “outside.” Does the Klein bottle have both an
inside and an outside? Explain.

Sphere Torus

Klein bottle Klein bottle

2x2 � 6y2 � 4z2 � 3x � 2

x2 � 3y2 � 2z2 � 2y � 4

b > 0.�a,(bx � ay � z � 0.

z �
y2

b2 �
x2

a2

xy

zyz0 � y � 2

z �
1
2 y2 � 1

xy-
�0, 0, 4�

y � �2
�0, 2, 0�

x � 2.y � 4

z � 8.z � 2

z � 1
2 x2 � 1

4 y2

z-
yz-z � sin y �0 � y � ��

z-
xz-z � 4x � x2

xy

x2 � z2 � cos2 yx2 � y2 � 2z � 0

z-yz-z � ln y

x-xy-xy � 2

x-xz-2z � 	4 � x2

Because of the forces caused by its rotation, Earth is an 
oblate ellipsoid rather than a sphere. The equatorial radius 
is 3963 miles and the polar 
radius is 3950 miles. 
Find an equation of 
the ellipsoid. (Assume
that the center of Earth 
is at the origin and 
that the trace formed 
by the plane 
corresponds to the 
equator.)

z � 0

45. Geography

Denis Tabler/Shutterstock.com
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804 Chapter 11 Vectors and the Geometry of Space

11.7 Cylindrical and Spherical Coordinates

Use cylindrical coordinates to represent surfaces in space.
Use spherical coordinates to represent surfaces in space.

Cylindrical Coordinates
You have already seen that some two-dimensional graphs are easier to represent in polar
coordinates than in rectangular coordinates. A similar situation exists for surfaces in
space. In this section, you will study two alternative space-coordinate systems. The
first, the cylindrical coordinate system, is an extension of polar coordinates in the
plane to three-dimensional space.

To convert from rectangular to cylindrical coordinates (or vice versa), use the conversion
guidelines for polar coordinates listed below and illustrated in Figure 11.66.

Cylindrical to rectangular:

Rectangular to cylindrical:

The point is called the pole. Moreover, because the representation of a point in
the polar coordinate system is not unique, it follows that the representation in the 
cylindrical coordinate system is also not unique.

Cylindrical-to-Rectangular Conversion

Convert the point to rectangular coordinates.

Solution Using the cylindrical-to-rectangular conversion equations produces

So, in rectangular coordinates, the point is as shown in
Figure 11.67.

�x, y, z� � ��2�3, 2, 3�,
z � 3.

y � 4 sin 
5�

6
� 4 �1

2� � 2

x � 4 cos 
5�

6
� 4 ���3

2 � � �2�3

�r, �, z� � �4, 5��6, 3�

�0, 0, 0�

     r2 � x2 � y2,    tan � �
y
x
,    z � z     

     x � r cos �,    y � r sin �,    z � z     

The Cylindrical Coordinate System

In a cylindrical coordinate system, a point in space is represented by an
ordered triple 

1. is a polar representation of the projection of in the plane.

2. is the directed distance from to P.�r, ��z

xy-P�r, ��

�r, �, z�.
P

x

y

z

(x, y, z)
(r,   , z)θ

θ
θ

θ

θ

P

x

y

Rectangular
coordinates:
x = r cos
y = r sin
z = z

tan    =

r2 = x2 + y2

z = z

y
x

r

Cylindrical coordinates:

Figure 11.66

z

y

x

θ

θ

π
(r,   , z) =   4,      , 3

5
6( (

r

z

P

1

−2

−3

−4

−1
1 2 3 4−1

1

2

3

4

(x, y, z) = (−2    3, 2, 3)

Figure 11.67

9781285774770_1107.qxp  8/27/13  9:52 AM  Page 804

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Rectangular-to-Cylindrical Conversion

Convert the point 

to cylindrical coordinates.

Solution Use the rectangular-to-cylindrical conversion equations.

You have two choices for and infinitely many choices for As shown in Figure 11.68,
two convenient representations of the point are

and in Quadrant I

and

and in Quadrant III

Cylindrical coordinates are especially convenient for representing cylindrical
surfaces and surfaces of revolution with the axis as the axis of symmetry, as shown in
Figure 11.69.

Cylinder Paraboloid Cone Hyperboloid
Figure 11.69

Vertical planes containing the axis and horizontal planes also have simple cylindrical
coordinate equations, as shown in Figure 11.70.

Figure 11.70

y

x

z Horizontal
plane:
z = c

y

x

θ = c

z
Vertical
plane:

= cθ

z-

z

y
x

r2 = z2 + 1
x2 + y2 − z2 = 1

z

y

x

r = z
x2 + y2 = z2

y
x

z

r = 2    z
x2 + y2 = 4z

y

x

z

r = 3
x2 + y2 = 9

z-

�r < 0��2, 
4�

3
, 2�.

�r > 0�2, 
�

3
, 2�

�.r

z � 2

� � arctan ��3 � � n� �
�

3
� n�tan � � �3

r � ±�1 � 3 � ±2

�x, y, z� � �1, �3, 2�
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( , , ) = (1, 3, 2)x  y  z

θ
y

x

=

3

2

1 2 3

3

2

1

r = 2

z = 2

z

θ π
(r,   , z) =   2,    , 2   or   −2,      , 2

3

π
3

π4
3( (( (

Figure 11.68
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Rectangular-to-Cylindrical Conversion

Find an equation in cylindrical coordinates for the surface represented by each
rectangular equation.

a.

b.

Solution

a. From Section 11.6, you know that the graph of

is an elliptic cone with its axis along the axis, as shown in Figure 11.71. When you
replace with the equation in cylindrical coordinates is

Rectangular equation

Cylindrical equation

b. The graph of the surface

is a parabolic cylinder with rulings parallel to the axis, as shown in Figure 11.72.
To obtain the equation in cylindrical coordinates, replace with and with

as shown.

Rectangular equation

Substitute for and for 

Collect terms and factor.

Divide each side by 

Solve for 

Cylindrical equation

Note that this equation includes a point for which so nothing was lost by
dividing each side by the factor 

Converting from cylindrical coordinates to rectangular coordinates is less 
straightforward than converting from rectangular coordinates to cylindrical coordinates,
as demonstrated in Example 4.

Cylindrical-to-Rectangular Conversion

Find an equation in rectangular coordinates for the surface represented by the
cylindrical equation

Solution

Cylindrical equation

Trigonometric identity

Replace with and with 

Rectangular equation

This is a hyperboloid of two sheets whose axis lies along the axis, as shown in 
Figure 11.73.

y-

 y2 � x2 � z2 � 1

y.r sin �xr cos � x2 � y2 � z2 � �1

 r2 cos2 � � r2 sin2 � � z2 � �1

 r2�cos2 � � sin2 �� � z2 � 1 � 0

 r2 cos 2� � z2 � 1 � 0

r2 cos 2� � z2 � 1 � 0.

r.
r � 0,

 r � csc � cot �

r. r �
cos �
sin2 �

r. r sin2 � � cos � � 0

 r�r sin2 � � cos �� � 0

x.r cos �yr sin � r2 sin2 � � r cos �

 y2 � x

r cos �,
xr2 sin2 �y2

z-

y2 � x

 r2 � 4z2.

 x2 � y2 � 4z2

r2,x2 � y2
z-

x2 � y2 � 4z2

y2 � x

x2 � y2 � 4z2
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y

z

4 6

3

4
6

x

x2 + y2 = 4z2

Rectangular:

r2 = 4z2

Cylindrical:

Figure 11.71

Cylindrical:
r = csc    cotθ θ

y

x

z

2

2

4

1

Rectangular:
y2 = x

Figure 11.72

z

2
3

2
3

3

−3

−2

−1 yx

Cylindrical:
r2 cos 2   + z2 + 1 = 0θ

Rectangular:
y2 − x2 − z2 = 1

Figure 11.73
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Spherical Coordinates
In the spherical coordinate system, each point is represented by an ordered triple: the
first coordinate is a distance, and the second and third coordinates are angles. This 
system is similar to the latitude-longitude system used to identify points on the 
surface of Earth. For example, the point on the surface of Earth whose latitude is 
North (of the equator) and whose longitude is West (of the prime meridian) is
shown in Figure 11.74. Assuming that Earth is spherical and has a radius of 4000 miles,
you would label this point as

Radius clockwise from down from

prime meridian North Pole

The relationship between rectangular and spherical coordinates is illustrated in
Figure 11.75. To convert from one system to the other, use the conversion guidelines
listed below.

Spherical to rectangular:

Rectangular to spherical:

To change coordinates between the cylindrical and spherical systems, use the 
conversion guidelines listed below.

Spherical to cylindrical :

Cylindrical to spherical :

     � � �r2 � z2,    � � �,    � � arccos� z
�r2 � z2�     

�r 	 0	

     r2 � �2 sin2 �,    � � �,    z � � cos �     

�r 	 0	

     �2 � x2 � y2 � z2,    tan � �
y
x
,    � � arccos� z

�x2 � y2 � z2�     

     x � � sin � cos �,    y � � sin � sin �,    z � � cos �     

50
80


�4000, �80
, 50
�.

80

40


11.7 Cylindrical and Spherical Coordinates 807

The Spherical Coordinate System

In a spherical coordinate system, a point in space is represented by an 
ordered triple where is the lowercase Greek letter rho and is 
the lowercase Greek letter phi.

1. is the distance between and the origin,

2. is the same angle used in cylindrical coordinates for 

3. is the angle between the positive axis and the line segment 

Note that the first and third coordinates, and are nonnegative.�,�

0 � � � �.
OP

\

,z-�

r 	 0.�

� 	 0.P�

����, �, ��,
P

x

y

80° W
40° N

Equator

Prime
meridian

z

Figure 11.74

x

y

(  ,   ,   )
(x, y, z)

θ φρ

θ

φ

ρ

P

x

y

r

O

z

z

φρr x2 + y2=    sin    =

Spherical coordinates
Figure 11.75
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The spherical coordinate system is useful primarily for surfaces in space that have
a point or center of symmetry. For example, Figure 11.76 shows three surfaces with
simple spherical equations.

Figure 11.76

Rectangular-to-Spherical Conversion

See LarsonCalculus.com for an interactive version of this type of example.

Find an equation in spherical coordinates for the surface represented by each
rectangular equation.

a. Cone: b. Sphere:

Solution

a. Use the spherical-to-rectangular equations

and

and substitute in the rectangular equation as shown.

So, you can conclude that

or

The equation represents the half-cone, and the equation 
represents the half-cone.

b. Because and the rectangular equation has the 
following spherical form.

Temporarily discarding the possibility that you have the spherical equation

or

Note that the solution set for this equation includes a point for which so 
nothing is lost by discarding the factor The sphere represented by the equation

is shown in Figure 11.77.� � 4 cos �
�.

� � 0,

� � 4 cos �.� � 4 cos � � 0

� � 0,

��� � 4 cos �� � 0�2 � 4� cos � � 0

z � � cos �,�2 � x2 � y2 � z2

lower
� � 3��4upper� � ��4

� �
3�

4
.� �

�

4

 tan � � ±  1

 tan2 � � 1

� 	 0 
sin2 �
cos2 �

� 1

 �2 sin2 � � �2 cos2 �

 �2 sin2 � �cos2 � � sin2 �� � �2 cos2 �

 �2 sin2 � cos2 � � �2 sin2 � sin2 � � �2 cos2 �

 x2 � y2 � z2

z � � cos �y � � sin � sin �,x � � sin � cos �,

x2 � y2 � z2 � 4z � 0x2 � y2 � z2

y

x

Half-cone:
= cφ 0 < c < π

2 ))

φ = c

z

y
x θ = c

Vertical half-plane:
= cθ

z

Sphere:
= cρ

y

x

c

z
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y

x

z

−2

2

4

11

2

ρ φ
Spherical:

= 4 cos
Rectangular:
x2 + y2 + z2 − 4z = 0

Figure 11.77
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11.7 Cylindrical and Spherical Coordinates 809

Cylindrical- to-Rectangular Conversion In Exercises
1–6, convert the point from cylindrical coordinates to 
rectangular coordinates.

1. 2.

3. 4.

5. 6.

Rectangular- to-Cylindrical Conversion In Exercises
7–12, convert the point from rectangular coordinates to 
cylindrical coordinates.

7. 8.

9. 10.

11. 12.

Rectangular-to-Cylindrical Conversion In Exercises
13–20, find an equation in cylindrical coordinates for the 
equation given in rectangular coordinates.

13. 14.

15. 16.

17. 18.

19. 20.

Cylindrical-to-Rectangular Conversion In Exercises
21–28, find an equation in rectangular coordinates for the
equation given in cylindrical coordinates, and sketch its graph.

21. 22.

23. 24.

25. 26.

27. 28.

Rectangular- to-Spherical Conversion In Exercises
29–34, convert the point from rectangular coordinates to
spherical coordinates.

29. 30.

31. 32.

33. 34.

Spherical- to-Rectangular Conversion In Exercises
35–40, convert the point from spherical coordinates to 
rectangular coordinates.

35. 36.

37. 38.

39. 40.

Rectangular-to-Spherical Conversion In Exercises
41– 48, find an equation in spherical coordinates for the 
equation given in rectangular coordinates.

41. 42.

43. 44.

45. 46.

47. 48.

Spherical-to-Rectangular Conversion In Exercises
49–56, find an equation in rectangular coordinates for the
equation given in spherical coordinates, and sketch its graph.

49. 50.

51. 52.

53. 54.

55. 56.

Matching In Exercises 57–62, match the equation (written
in terms of cylindrical or spherical coordinates) with its graph.
[The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

57. 58.

59. 60.

61. 62. � � 4 sec �r2 � z

� �
�

4
� � 5

� �
�

4
r � 5

y
x

3

2

−2
12

z

y

x

2

1

2
−2

2

z

π
4

y
x

55

5

z

y

x
55

5

z

y

x

4

−4

4

2

z

y

x

π
4

1 2 3

3

−3 −2

3 2

z

� � 4 csc � sec �� � csc �

� � 2 sec �� � 4 cos �

� �
�

2
� �

�

6

� �
3�

4
� � 5

x2 � y2 � z2 � 9z � 0x2 � y2 � 2z2

x � 13x2 � y2 � 16

x2 � y2 � 3z2 � 0x2 � y2 � z2 � 49

z � 6y � 2

�6, �, 
�

2��5, 
�

4
, 

3�

4 �
�9, 

�

4
, ���12, �

�

4
, 0�

�12, 
3�

4
, 

�

9��4, 
�

6
, 

�

4�

��1, 2, 1���3, 1, 2�3 �
�2, 2, 4�2 ���2, 2�3, 4�
��4, 0, 0��4, 0, 0�

r � 2 cos �r � 2 sin �

z � r2 cos2 �r2 � z2 � 5

r �
1
2
z� �

�

6

z � 2r � 3

x2 � y2 � z2 � 3z � 0y2 � 10 � z2

x2 � y2 � 8xy � x2

z � x2 � y2 � 11x2 � y2 � z2 � 17

x � 9z � 4

�2�3, �2, 6��1, �3, 4�
�3, �3, 7��2, �2, �4�
�2�2, �2�2, 4��0, 5, 1�

��0.5, 
4�

3
, 8��4, 

7�

6
, 3�

�6, �
�

4
, 2��3, 

�

4
, 1�

�2, ��, �4���7, 0, 5�

11.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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810 Chapter 11 Vectors and the Geometry of Space

Cylindrical-to-Spherical Conversion In Exercises 63–70,
convert the point from cylindrical coordinates to spherical
coordinates.

63. 64.

65. 66.

67. 68.

69. 70.

Spherical-to-Cylindrical Conversion In Exercises 71–78,
convert the point from spherical coordinates to cylindrical
coordinates.

71. 72.

73. 74.

75. 76.

77. 78.

Converting a Rectangular Equation In Exercises
83–90, convert the rectangular equation to an equation in 
(a) cylindrical coordinates and (b) spherical coordinates.

83. 84.

85. 86.

87. 88.

89. 90.

Sketching a Solid In Exercises 91–94, sketch the solid that
has the given description in cylindrical coordinates.

91.

92.

93.

94.

Sketching a Solid In Exercises 95–98, sketch the solid that
has the given description in spherical coordinates.

95.

96.

97.

98.

Think About It In Exercises 99–104, find inequalities that
describe the solid, and state the coordinate system used.
Position the solid on the coordinate system such that the
inequalities are as simple as possible.

99. A cube with each edge 10 centimeters long

100. A cylindrical shell 8 meters long with an inside diameter of
0.75 meter and an outside diameter of 1.25 meters

101. A spherical shell with inside and outside radii of 4 inches and
6 inches, respectively

102. The solid that remains after a hole 1 inch in diameter is
drilled through the center of a sphere 6 inches in diameter

103. The solid inside both and 

104. The solid between the spheres and
and inside the cone 

True or False? In Exercises 105–108, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

105. In cylindrical coordinates, the equation is a cylinder.

106. The equations and represent the
same surface.

107. The cylindrical coordinates of a point are unique.

108. The spherical coordinates of a point are unique.

109. Intersection of Surfaces Identify the curve of 
intersection of the surfaces (in cylindrical coordinates)

and 

110. Intersection of Surfaces Identify the curve of 
intersection of the surfaces (in spherical coordinates)

and � � 4.� � 2 sec �

r � 1.z � sin �

�x, y, z�
�x, y, z�

x2 � y2 � z2 � 4� � 2

r � z

z2 � x2 � y2x2 � y2 � z2 � 9,
x2 � y2 � z2 � 4

�x �
3
2�2

� y2 �
9
4x2 � y2 � z2 � 9

1 � � � 30 � � � ��2,0 � � � �,

0 � � � 20 � � � ��2,0 � � � ��2,

0 � � � 2�, ��4 � � � ��2, 0 � � � 1

0 � � � 2�, 0 � � � ��6, 0 � � � a sec �

0 � � � 2�, 2 � r � 4, z2 � �r2 � 6r � 8

0 � � � 2�, 0 � r � a, r � z � a

���2 � � � ��2, 0 � r � 3, 0 � z � r cos �

0 � � � ��2, 0 � r � 2, 0 � z � 4

y � 4x2 � y2 � 9

x2 � y2 � 36x2 � y2 � 4y

x2 � y2 � zx2 � y2 � z2 � 2z � 0

4�x2 � y2� � z2x2 � y2 � z2 � 25

�7, 
�

4
, 

3�

4 ��8, 
7�

6
, 

�

6�
�5, �

5�

6
, ���6, �

�

6
, 

�

3�
�18, 

�

3
, 

�

3��36, �, 
�

2�
�4, 

�

18
, 

�

2��10, 
�

6
, 

�

2�

�4, 
�

2
, 3��12, �, 5�

��4, 
�

3
, 4��4, �

�

6
, 6�

�2, 
2�

3
, �2��4, 

�

2
, 4�

�3, �
�

4
, 0��4, 

�

4
, 0�

WRITING ABOUT CONCEPTS
79. Rectangular and Cylindrical Coordinates Give

the equations for the coordinate conversion from 
rectangular to cylindrical coordinates and vice versa.

80. Spherical Coordinates Explain why in spherical
coordinates the graph of is a half-plane and not an
entire plane.

81. Rectangular and Spherical Coordinates Give the
equations for the coordinate conversion from rectangular to
spherical coordinates and vice versa.

� � c

82. HOW DO YOU SEE IT? Identify the surface
graphed and match the graph with its rectangular
equation. Then find an equation in cylindrical
coordinates for the equation given in rectangular
coordinates.

(a) (b)

(i) (ii) x2 � y2 � z2 � 2x2 � y2 �
4
9z

2

44

z

y
x

4

z

y
x

3

22
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Review Exercises 811

Writing Vectors in Different Forms In Exercises 1 and 2,
let and and (a) write and in component
form, (b) write and as the linear combination of the 
standard unit vectors and (c) find the magnitudes of and

and (d) find 

1.

2.

Finding a Vector In Exercises 3 and 4, find the component
form of given its magnitude and the angle it makes with the
positive -axis.

3. 4.

5. Finding Coordinates of a Point Find the coordinates
of the point located in the plane, four units to the right of
the plane, and five units behind the plane.

6. Finding Coordinates of a Point Find the coordinates
of the point located on the axis and seven units to the left of
the plane.

Finding the Distance Between Two Points in Space

In Exercises 7 and 8, find the distance between the points.

7.

8.

Finding the Equation of a Sphere In Exercises 9 and 10,
find the standard equation of the sphere.

9. Center: Diameter: 15

10. Endpoints of a diameter:

Finding the Equation of a Sphere In Exercises 11 and
12, complete the square to write the equation of the sphere in
standard form. Find the center and radius.

11.

12.

Writing a Vector in Different Forms In Exercises 13 and
14, the initial and terminal points of a vector are given. 
(a) Sketch the directed line segment, (b) find the component
form of the vector, (c) write the vector using standard unit 
vector notation, and (d) sketch the vector with its initial point
at the origin.

13. Initial point: 14. Initial point:

Terminal point: Terminal point:

Using Vectors to Determine Collinear Points In
Exercises 15 and 16, use vectors to determine whether the
points are collinear.

15.

16.

17. Finding a Unit Vector Find a unit vector in the direction
of 

18. Finding a Vector Find the vector of magnitude 8 in the
direction 

Finding Dot Products In Exercises 19 and 20, let 
and and find (a) the component forms of and 
(b) and (c) 

19.

20.

Finding the Angle Between Two Vectors In Exercises
21–24, find the angle between the vectors (a) in radians and
(b) in degrees.

21.

22.

23.

24.

Comparing Vectors In Exercises 25 and 26, determine
whether and are orthogonal, parallel, or neither.

25. 26.

Finding the Projection of u onto v In Exercises 27–30,
find the projection of onto 

27.

28.

29.

30.

31. Orthogonal Vectors Find two vectors in opposite 
directions that are orthogonal to the vector 

32. Work An object is pulled 8 feet across a floor using a force
of 75 pounds. The direction of the force is above the 
horizontal. Find the work done.

Finding Cross Products In Exercises 33–36, find 
(a) (b) and (c) 

33. 34.

35. 36.

37. Finding a Unit Vector Find a unit vector that is 
orthogonal to both and 

38. Area Find the area of the parallelogram that has the vectors
and as adjacent sides.v � �2, �4, 1�u � �3, �1, 5�

v � �4, 6, �8�.u � �2, �10, 8�

v � �1, �3, 4�v � �1, 1, 3�

u � �0, 2, 1�u � �2, �4, �4�

v � �4i � 2j � 3kv � 5i � 2j � k

u � 6i � 5j � 2ku � 4i � 3j � 6k

v � v.v � u,u � v,

30�

u � �5, 6, �3�.

v � 2i � 3j � ku � 5i � j � 3k,

v � �2, 0, 2�u � �1, �1, 1�,

v � 3i � 4ju � 4i � 2j,

v � �1, 5�u � �7, 9�,

v.u

v � �16, �12, 24�v � ��1, 4, 5�

u � ��4, 3, �6�u � �7, �2, 3�

vu

v � �2, �2, 1�u � �1, 0, �3�,

v � ��2, 1, �3�u � �10, �5, 15�,

v � �i � 5ju � 6i � 2j � 3k,

v � 2�cos�2��3�i � sin�2��3�j�
u � 5�cos�3��4�i � sin�3��4�j�

�

P � �2, �1, 3�, Q � �0, 5, 1�, R � �5, 5, 0�
P � �5, 0, 0�, Q � �4, 4, 0�, R � �2, 0, 6�

v � v.u � v,
v,uv � PR

\

,
u � PQ

\

�6, �3, 2�.
v

u � �2, 3, 5�.

�5, �4, 7�, �8, �5, 5�, �11, 6, 3�
�3, 4, �1�, ��1, 6, 9�, �5, 3, �6�

�3, �3, 8��4, 4, �7�
�6, 2, 0��2, �1, 3�

x2 � y2 � z2 � 10x � 6y � 4z � 34 � 0

x2 � y2 � z2 � 4x � 6y � 4 � 0

�0, 0, 4�, �4, 6, 0�
�3, �2, 6�;

��2, 1, �5�, �4, �1, �1�
�1, 6, 3�, ��2, 3, 5�

xz-
y-

yz-xz-
xy-

	v	 �
1
2, 	 � 225�	v	 � 8, 	 � 60�

x
v

P � ��2, �1�, Q � �5, �1�, R � �2, 4�
P � �1, 2�, Q � �4, 1�, R � �5, 4�

2u � v.v,
uj,i

vu
vuv � PR

\

,u � PQ
\

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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812 Chapter 11 Vectors and the Geometry of Space

39. Torque The specifications for a tractor state that the torque
on a bolt with head size inch cannot exceed 200 foot-pounds.
Determine the maximum force that can be applied to the
wrench in the figure.

40. Volume Use the triple scalar product to find the volume of
the parallelepiped having adjacent edges 

and 

Finding Parametric and Symmetric Equations In
Exercises 41 and 42, find sets of (a) parametric equations and
(b) symmetric equations of the line through the two points.
(For each line, write the direction numbers as integers.)

41. 42.

Finding Parametric Equations In Exercises 43–46, find a
set of parametric equations of the line.

43. The line passes through the point and is perpendicular
to the plane.

44. The line passes through the point and is parallel to the
line given by 

45. The line is the intersection of the planes 
and 

46. The line passes through the point and is perpendicular
to and 

Finding an Equation of a Plane In Exercises 47–50, find
an equation of the plane.

47. The plane passes through and

48. The plane passes through the point and is 
perpendicular to 

49. The plane contains the lines given by

and

50. The plane passes through the points and 
and is perpendicular to the plane 

51. Distance Find the distance between the point and
the plane 

52. Distance Find the distance between the point 
and the plane 

53. Distance Find the distance between the planes
and 

54. Distance Find the distance between the point 
and the line given by and 

Sketching a Surface in Space In Exercises 55–64,
describe and sketch the surface.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. Surface of Revolution Find an equation for the surface
of revolution formed by revolving the curve in the 

-plane about the -axis.

66. Surface of Revolution Find an equation for the surface
of revolution formed by revolving the curve in
the -plane about the -axis.

Converting Rectangular Coordinates In Exercises 67
and 68, convert the point from rectangular coordinates to 
(a) cylindrical coordinates and (b) spherical coordinates.

67. 68.

Cylindrical-to-Spherical Conversion In Exercises 69
and 70, convert the point from cylindrical coordinates to 
spherical coordinates.

69. 70.

Spherical-to-Cylindrical Conversion In Exercises 71
and 72, convert the point from spherical coordinates to 
cylindrical coordinates.

71. 72.

Converting a Rectangular Equation In Exercises 73 and
74, convert the rectangular equation to an equation in 
(a) cylindrical coordinates and (b) spherical coordinates.

73. 74.

Cylindrical-to-Rectangular Conversion In Exercises 75
and 76, find an equation in rectangular coordinates for the
equation given in cylindrical coordinates, and sketch its graph.

75. 76.

Spherical-to-Rectangular Conversion In Exercises 77
and 78, find an equation in rectangular coordinates for the
equation given in spherical coordinates, and sketch its graph.

77. 78. 
 � 3 cos �	 �
�

4

z � 4r � 5 cos 	

x2 � y2 � z2 � 16x2 � y2 � 2z


12, �
�

2
, 

2�

3 �
25, �
�

4
, 

3�

4 �


81, �
5�

6
, 27�3�
100, �

�

6
, 50�


�3
4

, 
3
4

, 
3�3

2 ���2�2, 2�2, 2�

xxz
2x � 3z � 1

yyz
z2 � 2y

y2 � z2 � 16x2 � z2 � 4

x2

25
�

y2

4
�

z2

100
� 1

x2

16
�

y2

9
� z2 � �1

16x2 � 16y2 � 9z2 � 0
x2

16
�

y2

9
� z2 � 1

y � cos zy �
1
2z

y � z2x � 2y � 3z � 6

z � 5 � t.y � 3 � 2t,x � 1 � t,
��5, 1, 3�

z � �3.5x � 3y �5x � 3y � z � 2

2x � 5y � z � 10.
�3, �2, 4�

6z � 6.2x � 3y �
�1, 0, 2�

2x � y � z � 4.
�2, �2, 1��5, 1, 3�

x � 1
�2

� y � 1 � z � 2.
x � 1
�2

� y � z � 1

n � 3i � j � k.
��2, 3, 1�

�1, 1, �2�.
��3, 4, 1�,��3, �4, 2�,

v � ��3, 1, 4�.u � �2, �5, 1�
�0, 1, 4�

x � y � 2z � 3.
3x � 3y � 7z � �4

x � y � z.
�1, 2, 3�

xz-
�1, 2, 3�

�8, 10, 5���1, 4, 3�,�3, 0, 2�,  �9, 11, 6�

w � �j � 2k.v � 2j � k,
u � 2i � j,

70°

50°

F

7
8

in.

2 ft

	 F 	

7
8
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P.S. Problem Solving 813

1. Proof Using vectors, prove the Law of Sines: If and 
are the three sides of the triangle shown in the figure, then

2. Using an Equation Consider the function

(a) Use a graphing utility to graph the function on the interval

(b) Find a unit vector parallel to the graph of at the point

(c) Find a unit vector perpendicular to the graph of at the point

(d) Find the parametric equations of the tangent line to the
graph of at the point 

3. Proof Using vectors, prove that the line segments joining the
midpoints of the sides of a parallelogram form a parallelogram
(see figure).

4. Proof Using vectors, prove that the diagonals of a rhombus
are perpendicular (see figure).

5. Distance

(a) Find the shortest distance between the point and
the line determined by the points and 

(b) Find the shortest distance between the point and
the line segment joining the points and

6. Orthogonal Vectors Let be a point in the plane with
normal vector Describe the set of points in the plane for
which is orthogonal to 

7. Volume

(a) Find the volume of the solid bounded below by the 
paraboloid and above by the plane 

(b) Find the volume of the solid bounded below by the 
elliptic paraboloid

and above by the plane where 

(c) Show that the volume of the solid in part (b) is equal to 
one-half the product of the area of the base times the
altitude, as shown in the figure.

8. Volume

(a) Use the disk method to find the volume of the sphere

(b) Find the volume of the ellipsoid 

9. Proof Prove the following property of the cross product.

10. Using Parametric Equations Consider the line given
by the parametric equations

and the point for any real number 

(a) Write the distance between the point and the line as a
function of 

(b) Use a graphing utility to graph the function in part (a). Use
the graph to find the value of such that the distance
between the point and the line is minimum.

(c) Use the zoom feature of a graphing utility to zoom out 
several times on the graph in part (b). Does it appear that
the graph has slant asymptotes? Explain. If it appears to
have slant asymptotes, find them.

11. Sketching Graphs Sketch the graph of each equation
given in spherical coordinates.

(a) (b) 
 � 2 cos �
 � 2 sin �

s

s.

s.�4, 3, s�

z � 2t � 1y �
1
2t � 1,x � �t � 3,

�u � v� � �w � z� � �u � v � z�w � �u � v � w�z

x2

a2 �
y2

b2 �
z2

c2 � 1.

x2 � y2 � z2 � r 2.

x

y

Base

Altitude

z

k > 0.z � k,

z �
x2

a2 �
y2

b2

z � 1.z � x2 � y2

�n � PP
\

0�.�n � PP
\

0�
Pn.

P0

P2�0, 1, 2�.
P1�0, 0, 1�

Q�2, 0, 0�
P2�0, 1, 2�.P1�0, 0, 1�

Q�2, 0, 0�

�0, 0�.f

�0, 0�.
f

�0, 0�.
f

�2 � x � 2.

 f �x� � x

0

�t4 � 1 dt.

a

A

B

C
b

c

sin A
	a	

�
sin B
	b	

�
sin C
	c	

.

cb,a,

P.S. Problem Solving See CalcChat.com for tutorial help and
worked-out solutions to odd-numbered exercises.
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814 Chapter 11 Vectors and the Geometry of Space

12. Sketching Graphs Sketch the graph of each equation
given in cylindrical coordinates.

(a) (b)

13. Tetherball A tetherball weighing 1 pound is pulled 
outward from the pole by a horizontal force until the rope
makes an angle of degrees with the pole (see figure).

(a) Determine the resulting tension in the rope and the 
magnitude of when 

(b) Write the tension in the rope and the magnitude of as
functions of Determine the domains of the functions.

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the two functions for

(e) Compare and as increases.

(f ) Find (if possible) and Are the 

results what you expected? Explain.

Figure for 13 Figure for 14

14. Towing A loaded barge is being towed by two tugboats,
and the magnitude of the resultant is 6000 pounds directed
along the axis of the barge (see figure). Each towline makes an
angle of degrees with the axis of the barge.

(a) Find the tension in the towlines when 

(b) Write the tension of each line as a function of 
Determine the domain of the function.

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the tension function.

(e) Explain why the tension increases as increases.

15. Proof Consider the vectors and 
where Find the cross product of the

vectors and use the result to prove the identity

16. Latitude-Longitude System Los Angeles is located at
North latitude and West longitude, and Rio de

Janeiro, Brazil, is located at South latitude and 
West longitude (see figure). Assume that Earth is spherical and
has a radius of 4000 miles.

(a) Find the spherical coordinates for the location of each city.

(b) Find the rectangular coordinates for the location of each city.

(c) Find the angle (in radians) between the vectors from the
center of Earth to the two cities.

(d) Find the great-circle distance between the cities. 
Hint:

(e) Repeat parts (a)–(d) for the cities of Boston, located at
North latitude and West longitude, and

Honolulu, located at North latitude and 
West longitude.

17. Distance Between a Point and a Plane Consider the
plane that passes through the points and Show that the
distance from a point to this plane is

where and 

18. Distance Between Parallel Planes Show that the 
distance between the parallel planes 

and

is

19. Intersection of Planes Show that the curve of 
intersection of the plane and the cylinder 
is an ellipse.

20. Vector Algebra Read the article “Tooth Tables: Solution
of a Dental Problem by Vector Algebra” by Gary Hosler
Meisters in Mathematics Magazine. (To view this article, go to
MathArticles.com.) Then write a paragraph explaining how
vectors and vector algebra can be used in the construction of
dental inlays.

x2 � y2 � 1z � 2y

Distance � �d1 � d2�
�a2 � b2 � c2

 .

ax � by � cz � d2 � 0ax � by � cz � d1 � 0

w � PQ
\

.u � PR
\

, v � PS
\

,

Distance � �u � �v � w��
	u � v 	

Q
S.R,P,

157.86�21.31�
71.06�42.36�

s � r	��
s

Los Angeles

x

y

z

Equator

meridian

Rio de Janeiro

Prime

43.23�22.90�
118.24�34.05�

sin� � �� � sin  cos � � cos  sin �.

 > �.�cos �, sin �, 0�,
v �u � �cos , sin , 0�

	

	.T

	 � 20�.

	

θ

θ
u

1 lb

θ

lim
	→��2�

 	 u 	. lim
	→��2�

 T  

		 u 	T

0� � 	 � 60�.

	.
uT

	 � 30�.u

	
u

z � r2 cos 2	r � 2 cos 	

	 0� 10� 20� 30� 40� 50� 60�

T

	u	

	 10� 20� 30� 40� 50� 60�

T
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