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436 Chapter 7 Applications of Integration

7.1 Area of a Region Between Two Curves

Find the area of a region between two curves using integration.
Find the area of a region between intersecting curves using integration.
Describe integration as an accumulation process.

Area of a Region Between Two Curves
With a few modifications, you can extend the application of definite integrals from the
area of a region under a curve to the area of a region between two curves. Consider two
functions and that are continuous on the interval Also, the graphs of both 
and lie above the axis, and the graph of lies below the graph of as shown in
Figure 7.1. You can geometrically interpret the area of the region between the graphs as
the area of the region under the graph of subtracted from the area of the region under
the graph of as shown in Figure 7.2.

Figure 7.2

To verify the reasonableness of the result
shown in Figure 7.2, you can partition the interval

into subintervals, each of width Then,
as shown in Figure 7.3, sketch a representative
rectangle of width and height 
where is in the th subinterval. The area of this
representative rectangle is

By adding the areas of the rectangles and taking
the limit as you obtain

Because and are continuous on is also continuous on and the limit
exists. So, the area of the region is

 � �b

a

 � f �x� � g�x�� dx.

 Area � lim
n→�

 �
n

i�1
� f �xi� � g�xi�� �x

�a, b�f � g�a, b�,gf

lim
n→�

 �
n

i�1
� f �xi� � g�xi�� �x.

�n →��,�� �→ 0
n

�Ai � �height��width� � � f �xi� � g�xi�� �x.

ixi

f �xi� � g�xi�,�x

�x.n�a, b�

�b

a

 g�x� dx��b

a

 f �x� dx��b

a

 � f �x� � g�x�� dx

     Area of region
under g      �     Area of region

under f      �     Area of region
between f and g     

x
a b

f

g

y

x
a b

f

g

y

x
a b

f

g

y

f,
g

f,gx-g
f�a, b�.gf

x

g

f

Region
between
two
curves

x = bx = a

y

Figure 7.1

x
a bxi

f

g
y

f (xi)

g(xi)

Δx

Representative rectangle
Height: f (xi) − g(xi)
Width: Δx

Figure 7.3REMARK Recall from
Section 5.3 that is the norm
of the partition. In a regular 
partition, the statements 
and are equivalent. n →�

��� → 0

���
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In Figure 7.1, the graphs of and are shown above the axis. This, however, is
not necessary. The same integrand can be used as long as and are 
continuous and for all in the interval This is summarized 
graphically in Figure 7.4. Notice in Figure 7.4 that the height of a representative 
rectangle is regardless of the relative position of the -axis.

Figure 7.4

Representative rectangles are used throughout this chapter in various applications
of integration. A vertical rectangle implies integration with respect to 
whereas a horizontal rectangle implies integration with respect to 

Finding the Area of a Region BetweenTwo Curves

Find the area of the region bounded by the graphs of and

Solution Let and Then for all in as
shown in Figure 7.5. So, the area of the representative rectangle is

and the area of the region is

 �
17
6

.

 �
1
3

�
1
2

� 2

 � 	x3

3
�

x2

2
� 2x


1

0

 � �1

0
��x2 � 2� � ��x�� dx

  A � �b

a

 � f �x� � g�x�� dx

 � ��x2 � 2� � ��x�� �x

 �A � � f �x� � g�x�� �x

�0, 1�,xg�x� � f �x�f �x� � x2 � 2.g�x� � �x

x � 1.
x � 0,y � �x,y � x2 � 2,

y.�of width �y�
x,�of width �x�

x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y

x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y

xf �x� � g�x)

�a, b�.xg�x� � f �x�
gf� f �x� � g�x��

x-gf
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Area of a Region Between Two Curves

If and are continuous on and for all in then the 
area of the region bounded by the graphs of and and the vertical lines 
and is

A � �b

a

 � f �x� � g�x�� dx.

x � b
x � agf

�a, b�,xg�x� � f �x��a, b�gf

x

3

3

1

1

−1

−1 2

(x, f(x))

(x, g(x))

f(x) = x2 + 2

g(x) = −x

y

Region bounded by the graph of the
graph of and 
Figure 7.5

x � 1x � 0,g,
f,
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Area of a Region Between Intersecting Curves
In Example 1, the graphs of and do not intersect, and the values
of and are given explicitly. A more common problem involves the area of a region
bounded by two intersecting graphs, where the values of and must be calculated.

A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the graphs of and 

Solution In Figure 7.6, notice that the graphs of and have two points of
intersection. To find the coordinates of these points, set and equal to each
other and solve for 

Set equal to 

Write in general form.

Factor.

Solve for 

So, and Because for all in the interval the
representative rectangle has an area of

and the area of the region is

A Region Lying Between Two Intersecting Graphs

The sine and cosine curves intersect infinitely many times, bounding regions of equal
areas, as shown in Figure 7.7. Find the area of one of these regions.

Solution Let and Then for all in the interval
corresponding to the shaded region in Figure 7.7. To find the two points of intersection
on this interval, set and equal to each other and solve for 

Set equal to 

Divide each side by 

Trigonometric identity

Solve for 

So, and Because for all in the interval
the area of the region is

 � 2�2.

 � 	�cos x � sin x

5��4

��4

 A � �5��4

��4
 �sin x � cos x� dx

���4, 5��4�,
xsin x 	 cos xb � 5��4.a � ��4

x.0 � x � 2� x �
�

4
 or  

5�

4
,

 tan x � 1

cos x. 
sin x
cos x

� 1

g�x�.f �x� sin x � cos x

x.g�x�f �x�

xg�x� � f �x�f�x� � sin x.g�x� � cos x

 �
9
2

.

 � 	�
x3

3
�

x2

2
� 2x


1

�2

  A � �1

�2
 ��2 � x2� � x� dx

� ��2 � x2� � x� �x�A � � f �x� � g�x�� �x

��2, 1�,xg�x� � f �x�b � 1.a � �2

x. x � �2 or 1

 ��x � 2��x � 1� � 0

 �x2 � x � 2 � 0

g�x�.f �x� 2 � x2 � x

x.
g�x�f�x�x-

gf

g�x� � x.f �x� � 2 � x2

ba
ba

g�x� � �xf �x� � x2 � 2
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x

−1

−1

−2

−2

1

1

(x, g(x))

(x, f(x))
g(x) = x

f(x) = 2 − x2

y

Region bounded by the graph of and
the graph of 
Figure 7.6

g
f

x

1

−1

ππ
2

π
2

3

(x, g(x))

(x, f(x))

g(x) = cos x

f(x) = sin x

y

One of the regions bounded by the
graphs of the sine and cosine functions
Figure 7.7
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To find the area of the region between two curves that intersect at more than two
points, first determine all points of intersection. Then check to see which curve is above
the other in each interval determined by these points, as shown in Example 4.

Curves That Intersect at More than Two Points

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the region between the graphs of

and

Solution Begin by setting and equal to each other and solving for This
yields the values at all points of intersection of the two graphs.

Set equal to 

Write in general form.

Factor.

Solve for 

So, the two graphs intersect when and 2. In Figure 7.8, notice that
on the interval The two graphs switch at the origin, however, and
on the interval So, you need two integrals—one for the interval

and one for the interval 

When the graph of a function of is a boundary of a region, it is often convenient
to use representative rectangles that are horizontal and find the area by integrating with
respect to In general, to determine the area between two curves, you can use

Vertical rectangles

in variable 

or

Horizontal rectangles

in variable 

where and are either adjacent points of intersection of the two curves
involved or points on the specified boundary lines.

�x2, y2��x1, y1�

y

A � �y2

y1

 ��right curve� � �left curve�� dy

x

A � �x2

x1

 ��top curve� � �bottom curve�� dx

y.

y

 � 24

 � ��12 � 24� � ��12 � 24�

 � 	3x4

4
� 6x2


0

�2
� 	�3x4

4
� 6x2


2

0

 � �0

�2
 �3x3 � 12x� dx � �2

0
 ��3x3 � 12x� dx

 A � �0

�2
 � f �x� � g�x�� dx � �2

0
 �g�x� � f �x�� dx

�0, 2�.��2, 0�
�0, 2�.f �x� � g�x�

��2, 0�.g�x� � f �x�
x � �2, 0,

x. x � �2, 0, 2

 3x�x � 2��x � 2� � 0

 3x3 � 12x � 0

g�x�.f �x� 3x3 � x2 � 10x � �x2 � 2x

x-
x.g�x�f �x�

g�x� � �x2 � 2x. f �x� � 3x3 � x2 � 10x
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x

y

4

6

−4

−1

−6

−8

−10

1

(0, 0)
(2, 0)

(−2, −8)

g(x) = −x2 + 2x

f(x) = 3x3 − x2 − 10x

f(x) ≤ g(x)g(x) ≤ f(x)

On and on 

Figure 7.8
 f �x� � g�x�.

�0, 2�,g�x� � f �x�,��2, 0�,

REMARK In Example 4, notice that you obtain an incorrect result when you 
integrate from to 2. Such integration produces

 � 0.

 �2

�2
 � f �x� � g�x�� dx � �2

�2
 �3x3 � 12x� dx

�2
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Horizontal Representative Rectangles

Find the area of the region bounded by the graphs of and 

Solution Consider

and

These two curves intersect when and as shown in Figure 7.9. Because
on this interval, you have

So, the area is 

Horizontal rectangles (integration Vertical rectangles (integration with
with respect to y) respect to x)
Figure 7.9 Figure 7.10

In Example 5, notice that by integrating with respect to you need only one
integral. To integrate with respect to you would need two integrals because the upper
boundary changes at as shown in Figure 7.10.

 �
9
2

 � 2 � 2 �
2
3� � 1

2
� 1 �

16
3 � � 2�0� � 22

3�
 � 	x2

2
� x �

�3 � x�3�2

3�2 

2

�1
� 2	�3 � x�3�2

3�2 

3

2

 � �2

�1
 �x � 1 � �3 � x�1�2� dx � 2�3

2
 �3 � x�1�2 dx

 A � �2

�1
 ��x � 1� � �3 � x� dx � �3

2
 ��3 � x � �3 � x � dx

x � 2,
x,

y,

x

y

−1

−1

−2

1

1

(2, 1)

(−1, −2)

y = x − 1

Δx

Δx

y = −    3 − x

y =     3 − x

x
−1

−1

−2

1

1

2

(2, 1)

(−1, −2)

f(y) = y + 1

g(y) = 3 − y2

Δy

y

 �
9
2

.

 � �1
3

�
1
2

� 2� � 8
3

� 2 � 4�
 � 	�y3

3
�

y2

2
� 2y


1

�2

 � �1

�2
 ��y2 � y � 2� dy

 A � �1

�2
 ��3 � y2� � �y � 1�� dy

� ��3 � y2� � �y � 1�� �y. �A � �g�y� � f �y�� �y

f �y� � g�y�
y � 1,y � �2

f �y� � y � 1.g�y� � 3 � y2

x � y � 1.x � 3 � y2
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Integration as an Accumulation Process
In this section, the integration formula for the area between two curves was developed by
using a rectangle as the representative element. For each new application in the remaining
sections of this chapter, an appropriate representative element will be constructed using
precalculus formulas you already know. Each integration formula will then be obtained
by summing or accumulating these representative elements.

For example, the area formula in this section was developed as follows.

Integration as an Accumulation Process

Find the area of the region bounded by the graph of and the axis. Describe
the integration as an accumulation process.

Solution The area of the region is

You can think of the integration as an accumulation of the areas of the rectangles formed
as the representative rectangle slides from to as shown in Figure 7.11.

Figure 7.11

A � �2

�2
 �4 � x2� dx �

32
3

A � �1

�2
 �4 � x2� dx � 9

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

A � �0

�2
 �4 � x2� dx �

16
3

A � ��1

�2
 �4 � x2� dx �

5
3

A � ��2

�2
 �4 � x2� dx � 0

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

x � 2,x � �2

A � �2

�2
 �4 � x2� dx.

x-y � 4 � x2

     New integration
formula           Representative

element           Known precalculus
formula      
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     A � �b

a
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442 Chapter 7 Applications of Integration

Writing a Definite Integral In Exercises 1–6, set up the
definite integral that gives the area of the region.

1. 2.

3. 4.

5. 6.

Finding a Region In Exercises 7–12, the integrand of the
definite integral is a difference of two functions. Sketch the
graph of each function and shade the region whose area is 
represented by the integral.

7. 8.

9. 10.

11.

12.

Think About It In Exercises 13 and 14, determine which
value best approximates the area of the region bounded by the
graphs of and (Make your selection on the basis of a sketch
of the region and not by performing any calculations.)

13.

(a) (b) 2 (c) 10 (d) 4 (e) 8

14.

(a) 1 (b) 6 (c) (d) 3 (e) 4

Comparing Methods In Exercises 15 and 16, find the area
of the region by integrating (a) with respect to and (b) with
respect to (c) Compare your results. Which method is 
simpler? In general, will this method always be simpler than
the other one? Why or why not?

15. 16.

Finding the Area of a Region In Exercises 17–30, sketch
the region bounded by the graphs of the equations and find the
area of the region.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30. g�x� �
4

2 � x
,   y � 4,   x � 0

f �x� �
10
x

,  x � 0,  y � 2,  y � 10

f �y� �
y

�16 � y 2
,   g�y� � 0,   y � 3

f �y� � y 2 � 1,   g�y� � 0,   y � �1,   y � 2

f �y� � y�2 � y�,   g�y� � �y

f �y� � y 2,   g�y� � y � 2

g�x� � x � 1f �x� � 3�x � 1,

g�x� �
1
2x � 3f (x) � �x � 3,

x � 4x � 1,y � 0,y �
4
x3,

y � 0y � 2 � x,y � x,

y � �x � 1y � �x2 � 3x � 1,

g�x� � x � 2f �x� � x2 � 2x,

x � 1x � �1,y � x � 3,y � �x3 � 2,

x � 1x � 0,y � �x � 2,y � x2 � 1,

−2−4−6 2 4 6
−2

4

6

8

10

x

y

x

y

−2−4−6 4 6

−4

−6

4

6

y � 6 � xx � y � 2

y � x2x � 4 � y2

y.
x

�3

g�x� � 2 ��xf �x� � 2 �
1
2 x,

�2

g�x� � �x � 1�2f �x� � x � 1,

g.f

�4

0
 �2�y � y � dy

�1

�2
 ��2 � y� � y2� dy

���4

���4
 �sec2 x � cos x� dx�3

2
 	x3

3
� x� �

x
3
 dx

�1

�1
 ��2 � x2� � x2� dx�4

0
 	�x � 1� �

x
2
 dx

x

1

−1

1 2

y

y1
y2

x

1

−1

−1 1

y

y1

y2

y2 � x � 1y2 � 0

y1 � �x � 1�3y1 � 3�x3 � x�

x

1

1

y

y1
y2

x
2

1

−1
1 4

4

5

3

y

y1
y2

y2 � x3y2 � �x2 � 2x � 3

y1 � x2y1 � x2 � 4x � 3

x
−2−4 2

2

4

6

8

y

y1

y2x

−2

−4

−6

−8

2 4 8

y1

y2

y

y2 � 2x � 5y2 � 0

y1 � x2 � 2x � 1y1 � x2 � 6x

7.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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7.1 Area of a Region Between Two Curves 443

Finding the Area of a Region In Exercises 31–36, (a) use
a graphing utility to graph the region bounded by the graphs
of the equations, (b) find the area of the region analytically, and
(c) use the integration capabilities of the graphing utility to 
verify your results.

31.

32.

33.

34.

35.

36.

Finding the Area of a Region In Exercises 37–42, sketch
the region bounded by the graphs of the functions and find the
area of the region.

37.

38.

39.

40.

41.

42.

Finding the Area of a Region In Exercises 43–46, (a) use
a graphing utility to graph the region bounded by the graphs
of the equations, (b) find the area of the region, and (c) use the
integration capabilities of the graphing utility to verify your
results.

43.

44.

45.

46.

Finding the Area of a Region In Exercises 47–50, (a) use
a graphing utility to graph the region bounded by the graphs
of the equations, (b) explain why the area of the region is 
difficult to find by hand, and (c) use the integration capabilities
of the graphing utility to approximate the area to four decimal
places.

47.

48.

49.

50.

Integration as an Accumulation Process In Exercises
51–54, find the accumulation function Then evaluate at
each value of the independent variable and graphically show
the area given by each value of 

51. (a) (b) (c)

52. (a) (b) (c)

53. (a) (b) (c)

54. (a) (b) (c)

Finding the Area of a Figure In Exercises 55–58, use 
integration to find the area of the figure having the given 
vertices.

55.

56.

57.

58.

59. Numerical Integration Estimate the surface area of the
golf green using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

60. Numerical Integration Estimate the surface area of the
oil spill using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

Using a Tangent Line In Exercises 61–64, set up and 
evaluate the definite integral that gives the area of the region
bounded by the graph of the function and the tangent line to
the graph at the given point.

61.

62.

63.

64. y �
2

1 � 4x2,  1
2

, 1�

f �x� �
1

x2 � 1
,  1, 

1
2�

y � x3 � 2x,  ��1, 1�
f �x� � x3,  �1, 1�
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14
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12
 f
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15
 f

t

20
 f

t

23
 f

t

25
 f

t

26
 f

t

14
 f

t

�0, 0�, �1, 2�, �3, �2�, �1, �3�
�0, 2�, �4, 2�, �0, �2�, ��4, �2�

�4, 3��6, 0�,�0, 0�,
�2, �3�, �4, 6�, �6, 1�

F�4�F�0�F��1�F�y� � �y

�1
 4e x�2 dx

F1
2�F�0�F��1�F�
� � �


�1
 cos 

��

2
 d�

F�6�F�4�F�0�F�x� � �x

0
 1

2
t 2 � 2� dt

F�6�F�2�F�0�F�x� � �x

0
 1

2
t � 1� dt

F.

FF.

y � x2,  y � �3 � x

y � x2,  y � 4 cos x

y � �x ex,   y � 0,   x � 0,   x � 1

y �� x3

4 � x
,   y � 0,   x � 3

g�x� �
4 ln x

x
,   y � 0,   x � 5

 f �x� �
1
x2 e1�x,   y � 0,   1 � x � 3

 f �x� � 2 sin x � cos 2x,   y � 0,   0 < x � �

 f �x� � 2 sin x � sin 2x,   y � 0,   0 � x � �

f �x� � 2x,   g�x� �
3
2

x � 1

 f �x� � xe�x2,   y � 0,   0 � x � 1

 f �x� � sec 
�x
4

 tan 
�x
4

,  g�x� � ��2 � 4�x � 4,  x � 0

 f �x� � 2 sin x,   g�x� � tan x,   �
�

3
� x �

�

3

 f �x� � sin x,   g�x� � cos 2x,   �
�

2
� x �

�

6

 f �x� � cos x,  g�x� � 2 � cos x,  0 � x � 2�

 f �x� �
6x

x2 � 1
,   y � 0,   0 � x � 3

g�x� �
1
2

x2f �x� �
1

1 � x2,

f �x� � x4 � 9x2,  g�x� � x3 � 9x

 f �x� � x4 � 4x2,   g�x� � x2 � 4

y � x4 � 2x2,   y � 2x2

 f �x� � x�x2 � 3x � 3�,   g�x� � x2
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444 Chapter 7 Applications of Integration

Dividing a Region In Exercises 69 and 70, find such that
the line divides the region bounded by the graphs of the
two equations into two regions of equal area.

69. 70.

Dividing a Region In Exercises 71 and 72, find such that
the line divides the region bounded by the graphs of the
equations into two regions of equal area.

71. 72.

Limits and Integrals In Exercises 73 and 74, evaluate the
limit and sketch the graph of the region whose area is 
represented by the limit.

73. where and 

74. where and 

Revenue In Exercises 75 and 76, two models and are
given for revenue (in billions of dollars) for a large corporation.
Both models are estimates of revenues from 2015 through 2020,
with corresponding to 2015. Which model projects the
greater revenue? How much more total revenue does that
model project over the six-year period?

75.

76.

77. Lorenz Curve Economists use Lorenz curves to illustrate
the distribution of income in a country. A Lorenz curve,

represents the actual income distribution in the 
country. In this model, represents percents of families in the
country and represents percents of total income. The model

represents a country in which each family has the 
same income. The area between these two models, where

indicates a country’s “income inequality.” The
table lists percents of income for selected percents of families

in a country.

(a) Use a graphing utility to find a quadratic model for the
Lorenz curve.

(b) Plot the data and graph the model.

(c) Graph the model How does this model compare
with the model in part (a)?

(d) Use the integration capabilities of a graphing utility to
approximate the “income inequality.”

78. Profit The chief financial officer of a company reports that
profits for the past fiscal year were $15.9 million. The officer
predicts that profits for the next 5 years will grow at a 
continuous annual rate somewhere between and 5%.
Estimate the cumulative difference in total profit over the 
5 years based on the predicted range of growth rates.

31
2%

y � x.

x 60 70 80 90

y 28.03 39.77 55.28 75.12

x 10 20 30 40 50

y 3.35 6.07 9.17 13.39 19.45

x
y

0 � x � 100,

y � x
y

x
y � f �x�,

R2 � 7.21 � 0.1t � 0.01t2

R1 � 7.21 � 0.26t � 0.02t2

R2 � 7.21 � 0.45t

R1 � 7.21 � 0.58t

t � 15

R2R1

�x �
4
n

xi � �2 �
4i
n

lim
���→0

 �
n

i�1
�4 � xi

2� �x,

�x �
1
n

xi �
i
n

lim
���→0

 �
n

i�1
�xi � xi

2� �x,

y2 � 4 � x,  x � 0y � x,  y � 4,  x � 0

x � a
a

y � 9 � �x�,   y � 0y � 9 � x2,   y � 0

y � b
b

WRITING ABOUT CONCEPTS
65. Area Between Curves The graphs of 

and intersect at three points. However,
the area between the curves can be found by a single 
integral. Explain why this is so, and write an integral for
this area.

66. Using Symmetry The area of the region bounded by
the graphs of and cannot be found by the 
single integral Explain why this is so. Use
symmetry to write a single integral that does represent the
area.

67. Interpreting Integrals Two cars with velocities 
and are tested on a straight track (in meters per 
second). Consider the following.

(a) Write a verbal interpretation of each integral.

(b) Is it possible to determine the distance between the two
cars when seconds? Why or why not?

(c) Assume both cars start at the same time and place.
Which car is ahead when seconds? How far
ahead is the car?

(d) Suppose Car 1 has velocity and is ahead of Car 2 by
13 meters when seconds. How far ahead or
behind is Car 1 when seconds?t � 30

t � 20
v1

t � 10

t � 5

�30

20
 �v1�t� � v2�t�� dt � �5

�10

0
 �v1�t� � v2�t�� dt � 30�5

0
 �v1�t� � v2�t�� dt � 10

v2

v1

�1
�1 �x3 � x� dx.

y � xy � x3

y � x4 � 2x2 � 1
y � 1 � x2

68. HOW DO YOU SEE IT? A state legislature is
debating two proposals for eliminating the annual
budget deficits after 10 years. The rate of decrease
of the deficits for each proposal is shown in the
figure.

(a) What does the area between the two curves represent?

(b) From the viewpoint of minimizing the cumulative
state deficit, which is the better proposal? Explain.
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7.1 Area of a Region Between Two Curves 445

80. Mechanical Design The surface of a machine part is the
region between the graphs of and 
(see figure).

(a) Find where the parabola is tangent to the graph of 

(b) Find the area of the surface of the machine part.

81. Area Find the area between the graph of and the

line segment joining the points and as shown

in the figure.

82. Area Let and Show that the area of the ellipse

is (see figure).

True or False? In Exercises 83–86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83. If the area of the region bounded by the graphs of and 
is 1, then the area of the region bounded by the graphs of

and is also 1.

84. If

then

85. If the graphs of and intersect midway between and
then

86. The line

divides the region under the curve

on into two regions of equal area.�0, 1�

 f �x� � x�1 � x�

y � �1 � 3�0.5 �x

�b

a

 � f �x� � g�x�� dx � 0.

x � b,
x � agf

�b

a

 �g�x� � f �x�� dx � �A.

�b

a

 � f �x� � g�x�� dx � A

k�x� � g�x� � Ch�x� � f �x� � C

gf

ab

= 1+
x2

a2

y2

b2

x

y

�ab
x2

a2 �
y2

b2 � 1

b > 0.a > 0

1

6
π

3
π

π7
6

1
2

, −

(0, 0)

4
x

y

1
2

))

7�

6
, �

1
2�,�0, 0�

y � sin x

y1.k

x
y1

y2

y

y2 � 0.08x2 � ky1 � �x�

Concrete sections for a new building have the dimensions 
(in meters) and shape shown in the figure.

(a) Find the area of the 
face of the section
superimposed on 
the rectangular 
coordinate system.

(b) Find the volume of
concrete in one of 
the sections by 
multiplying the area 
in part (a) by 2 meters.

(c) One cubic meter of concrete weighs 5000 pounds. Find
the weight of the section.

x

(−5.5, 0)
2 m

(5.5, 0)

2

1

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

y

1
3

y = 5 − x1
3

y = 5 + x

79. Building Design

PUTNAM EXAM CHALLENGE
87. The horizontal line intersects the curve 

in the first quadrant as shown in the figure. Find so that
the areas of the two shaded regions are equal.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

x

y

y = 2x − 3x3

y = c

c
y � 2x � 3x3y � c

jl661227/Shutterstock.com
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446 Chapter 7 Applications of Integration

7.2 Volume:The Disk Method

Find the volume of a solid of revolution using the disk method.
Find the volume of a solid of revolution using the washer method.
Find the volume of a solid with known cross sections.

The Disk Method
You have already learned that area is only one of the many applications of the definite
integral. Another important application is its use in finding the volume of a three-
dimensional solid. In this section, you will study a particular type of three-dimensional
solid—one whose cross sections are similar. Solids of revolution are used commonly in
engineering and manufacturing. Some examples are axles, funnels, pills, bottles, and
pistons, as shown in Figure 7.12.

Solids of revolution
Figure 7.12

When a region in the plane is revolved about a line, the resulting solid is a solid of
revolution, and the line is called the axis of revolution. The simplest such solid is a
right circular cylinder or disk, which is formed by revolving a rectangle about an axis
adjacent to one side of the rectangle, as shown in Figure 7.13. The volume of such a
disk is

where is the radius of the disk and is the width.
To see how to use the volume of a disk to find the volume of a general solid of 

revolution, consider a solid of revolution formed by revolving the plane region in 
Figure 7.14 about the indicated axis. To determine the volume of this solid, consider a
representative rectangle in the plane region. When this rectangle is revolved about the
axis of revolution, it generates a representative disk whose volume is 

Approximating the volume of the solid by such disks of width and radius 
produces

 � ��
n

i�1
 �R�xi��2 �x.

 Volume of solid � �
n

i�1
� �R�xi��2 �x

R�xi��xn

     �V � �R2 �x.     

wR

 � �R2w

 Volume of disk � �area of disk��width of disk�

R

Rectangle

Axis of revolution

w

R

Disk

w

Volume of a disk:
Figure 7.13

�R2w
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Disk method
Figure 7.14

This approximation appears to become better and better as So, you
can define the volume of the solid as

Schematically, the disk method looks like this.

Known Precalculus Representative New Integration
Formula Element Formula

A similar formula can be derived when the axis of revolution is vertical.

Horizontal axis of revolution Vertical axis of revolution
Figure 7.15

R(y)

c

d

Δy

c

d
V = π ∫ [R(y)]2 dy

R(x)

a b

Δx

a
V = π ∫ [R(x)]2 dx

b

     
Solid of revolution

V � ��b

a

 �R�x��2 dx

     
     �V � � �R�xi��2 �x          Volume of disk

V � �R2w      

Volume of solid � lim
	�	→0

��
n

i�1
�R�xi��2 �x � � �b

a

 �R�x��2 dx.

�n →��.	� 	 → 0

Solid of
revolution

veAxis of
revolution

Δx

Approximation
by n disks

Representati
disk

R

Δx
x = bx = a

Plane region

Representative
rectangle

7.2 Volume: The Disk Method 447

THE DISK METHOD

To find the volume of a solid of revolution with the disk method, use one of the
formulas below. (See Figure 7.15.)

Horizontal Axis of Revolution Vertical Axis of Revolution

Volume � V � ��d

c

 �R�y��2 dyVolume � V � ��b

a

 �R�x�� 2 dx

REMARK In Figure 7.15,
note that you can determine 
the variable of integration 
by placing a representative 
rectangle in the plane region
“perpendicular” to the axis of
revolution. When the width 
of the rectangle is integrate
with respect to and when the
width of the rectangle is 
integrate with respect to y.

�y,
x,

�x,
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The simplest application of the disk method involves a plane region bounded by the
graph of and the axis. When the axis of revolution is the axis, the radius is
simply 

Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

and the axis about the axis.

Solution From the representative rectangle in the upper graph in Figure 7.16, you
can see that the radius of this solid is

So, the volume of the solid of revolution is

Apply disk method.

Substitute for 

Simplify.

Integrate.

Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of 

and about the line as shown in Figure 7.17.

Solution By equating and you can determine that the two graphs intersect
when To find the radius, subtract from 

To find the volume, integrate between and 1.

Apply disk method.

Substitute for 

Simplify.

Integrate.

 �
16�

15

 � �
x �
2x3

3
�

x5

5 �
1

�1

 � ��1

�1
 �1 � 2x2 � x4� dx

R�x�.1 � x2 � ��1

�1
 �1 � x2�2 dx

 V � ��b

a

 �R�x��2 dx

�1

 � 1 � x2

 � �2 � x2� � 1

 R�x� � f �x� � g�x�

f �x�.g�x�x � ±1.
g�x�,f �x�

y � 1,g�x� � 1

 f�x� � 2 � x2

 � 2�.

 � ��1 � 1�

 � �
�cos x�
�

0

 � ���

0
 sin x dx

R�x�.�sin x � ���

0
��sin x�2

dx

 V � ��b

a

 �R�x��2 dx

 � �sin x.

R�x� � f �x�

x-�0 � x � ��x-

 f �x� � �sin x

f �x�.
R�x�x-x-f
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x

1

−1

ππ
2

Δx

R(x)

f(x) =     sin x

Plane region

y

x

1

−1

π

Solid of revolution

y

Figure 7.16

x

R(x)

g(x)

f(x) = 2 − x2

2

−1 1

Axis of
revolution

Plane region

Δx f(x)

y

g(x) = 1

x
−1 1

2

Solid of
revolution

y

Figure 7.17
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The Washer Method
The disk method can be extended to cover solids of revolution with holes by replacing
the representative disk with a representative washer. The washer is formed by revolving
a rectangle about an axis, as shown in Figure 7.18. If and are the inner and outer
radii of the washer and is the width of the washer, then the volume is

To see how this concept can be used to find the volume of a solid of revolution,
consider a region bounded by an outer radius and an inner radius as shown
in Figure 7.19. If the region is revolved about its axis of revolution, then the volume of
the resulting solid is

Washer method

Note that the integral involving the inner radius represents the volume of the hole and
is subtracted from the integral involving the outer radius.

Figure 7.19

Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

and

about the axis, as shown in Figure 7.20.

Solution In Figure 7.20, you can see that the outer and inner radii are as follows.

Outer radius

Inner radius

Integrating between 0 and 1 produces

Apply washer method.

Substitute for and for 

Simplify.

Integrate.

 �
3�

10
.

 � �
x2

2
�

x5

5 �
1

0

 � ��1

0
 �x � x4� dx

r�x�.x2R�x��x � ��1

0
 ���x �2

� �x2�2� dx

 V � ��b

a

 ��R�x��2 � �r�x��2� dx

 r�x� � x2

 R�x� � �x

x-

y � x2y � �x

Solid of revolution
with hole

R(x) r(x)

Plane region

a b

     V � ��b

a

 ��R�x��2 � �r�x��2� dx.     

r�x�,R�x�

Volume of washer � � �R2 � r2�w.

w
Rr
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Axis of revolution

R

r

w

r

R

Disk

Solid of revolution

w

Figure 7.18

y = x2

y =    x

r = x2

R =    x

x

1

1

Δx

(0, 0)

(1, 1)

Plane region

y

−1

1

1

Solid of
revolution

x

y

Solid of revolution
Figure 7.20
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In each example so far, the axis of revolution has been horizontal and you have
integrated with respect to In the next example, the axis of revolution is vertical and
you integrate with respect to In this example, you need two separate integrals to 
compute the volume.

Integrating with Respect to y, Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of

and

about the axis, as shown in Figure 7.21.

Figure 7.21

Solution For the region shown in Figure 7.21, the outer radius is simply 
There is, however, no convenient formula that represents the inner radius. When

but when is determined by the equation 
which implies that 

Using this definition of the inner radius, you can use two integrals to find the volume.

Apply washer method.

Simplify.

Integrate.

Note that the first integral represents the volume of a right circular cylinder
of radius 1 and height 1. This portion of the volume could have been determined 
without using calculus.

� 1
0  1 dy

 �
3�

2

 � � � � �4 � 2 � 2 �
1
2�

 � �
y�
1

0
 � � 
2y �

y2

2 �
2

1

 � ��1

0
 1 dy � ��2

1
 �2 � y� dy

 V � ��1

0
 �12 � 02� dy � ��2

1
 �12 � ��y � 1 �2� dy

r� y� � �0,
�y � 1,

     0 � y � 1
     1 � y � 2

r � �y � 1 .
y � x2 � 1,r1 � y � 2,r � 0,0 � y � 1,

R � 1.

x
1−1

2

Solid of
revolution

y

Δy

Δy

(1, 2)

r

1

2

1

x

For 1 ≤ y ≤ 2:
R = 1
r =     y − 1

For 0 ≤ y ≤ 1:
R = 1
r = 0

Plane region

R
y

y-

x � 1x � 0,y � 0,y � x2 � 1,

y.
x.
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TECHNOLOGY Some graphing utilities have the capability of generating (or
have built-in software capable of generating) a solid of revolution. If you have access
to such a utility, use it to graph some of the solids of revolution described in this 
section. For instance, the solid in Example 4 might appear like that shown in 
Figure 7.22.

Generated by Mathematica

Figure 7.22
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Manufacturing

See LarsonCalculus.com for an interactive version of this type of example.

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches, as
shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of the
resulting metal ring?

Solution You can imagine the ring to be generated by a segment of the circle whose
equation is as shown in Figure 7.23(b). Because the radius of the hole is
3 inches, you can let and solve the equation to determine that the
limits of integration are So, the inner and outer radii are and

and the volume is

Solids with Known Cross Sections
With the disk method, you can find the volume of a solid having a circular cross
section whose area is This method can be generalized to solids of any shape,
as long as you know a formula for the area of an arbitrary cross section. Some common
cross sections are squares, rectangles, triangles, semicircles, and trapezoids.

(a) Cross sections perpendicular to -axis (b) Cross sections perpendicular to -axis

Figure 7.24
yx

y

y = c

y = d

x

Δy

x

y

x = a

x = b

Δx

A � �R2.

 �
256�
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 � � 
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 �16 � x2� dx

 � ��4

�4
 ���25 � x2 �2

� �3�2� dx

 V � ��b

a

 ��R�x��2 � �r�x��2� dx

R�x� � �25 � x2 ,
r�x� � 3x � ±4.

x2 � y2 � 25y � 3
x2 � y2 � 25,

7.2 Volume: The Disk Method 451

VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area taken perpendicular to the axis,

See Figure 7.24(a).

2. For cross sections of area taken perpendicular to the axis,

See Figure 7.24(b).Volume � �d

c

 A�y� dy.

y-A�y�

Volume � �b

a

 A�x� dx.

x-A�x�

3 in.

5 in.

x

Solid of revolution

4 5

y

x

y

−5 −4 −3 −2 −1

r(x) = 3

R(x) =     25 − x2 y =     25 − x2

y = 3

Plane region

1 2 3 4 5

(b)

Figure 7.23

(a)
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Triangular Cross Sections

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region
bounded by the lines

and

The cross sections perpendicular to the axis are equilateral triangles.

Solution The base and area of each triangular cross section are as follows.

Length of base

Area of equilateral triangle

Area of cross section

Because ranges from 0 to 2, the volume of the solid is

An Application to Geometry

Prove that the volume of a pyramid with a square base is

where is the height of the pyramid and is the area of the base.

Solution As shown in Figure 7.26, you can intersect the pyramid with a plane
parallel to the base at height to form a square cross section whose sides are of length

Using similar triangles, you can show that

or

where is the length of the sides of the base of the pyramid. So,

Integrating between 0 and produces
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Triangular base in -plane
Figure 7.25
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7.2 Volume: The Disk Method 453

Finding the Volume of a Solid In Exercises 1–6, set up
and evaluate the integral that gives the volume of the solid
formed by revolving the region about the -axis.

1. 2.

3. 4.

5. 6.

Finding the Volume of a Solid In Exercises 7–10, set up
and evaluate the integral that gives the volume of the solid
formed by revolving the region about the -axis.

7. 8.

9. 10.

Finding the Volume of a Solid In Exercises 11–14, find
the volumes of the solids generated by revolving the region
bounded by the graphs of the equations about the given lines.

11.

(a) the axis (b) the axis

(c) the line (d) the line 

12.

(a) the axis (b) the axis

(c) the line (d) the line 

13.

(a) the axis (b) the line 

14.

(a) the axis (b) the line 

Finding the Volume of a Solid In Exercises 15–18, find
the volume of the solid generated by revolving the region
bounded by the graphs of the equations about the line 

15. 16.

17.

18.

Finding the Volume of a Solid In Exercises 19–22, find
the volume of the solid generated by revolving the region
bounded by the graphs of the equations about the line 

19.

20.

21.

22.

Finding the Volume of a Solid In Exercises 23–30, find
the volume of the solid generated by revolving the region
bounded by the graphs of the equations about the -axis.

23.

24. y � x�4 � x2,  y � 0

y �
1

�x � 1
,  y � 0,  x � 0,  x � 4

x

xy � 3,  y � 1,  y � 4,  x � 5

x � y 2,  x � 4

y � 3 � x,  y � 0,  y � 2,  x � 0

y � x,  y � 0,  y � 4,  x � 5

x � 5.

y � sec x,  y � 0,  0 � x �
�

3

y �
3

1 � x
,  y � 0,  x � 0,  x � 3

y �
1
2 x3,  y � 4,  x � 0y � x,  y � 3,  x � 0

y � 4.

y � 1x-

y � 4 � 2x � x2,  y � 4 � x

y � 6x-

y � x2,   y � 4x � x2

x � 2y � 8

x-y-

y � 2x2,   y � 0,   x � 2

x � 6x � 3

y-x-

y � �x,   y � 0,   x � 3

x

1

2

2

3

3

4

41

y

x

1

1

y

x � �y2 � 4yy � x2�3
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1

2

2
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41
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1
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1
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1
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1

2
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3

3
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x

1
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x

7.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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454 Chapter 7 Applications of Integration

25.

26.

27.

28.

29.

30.

Finding the Volume of a Solid In Exercises 31 and 32,
find the volume of the solid generated by revolving the region
bounded by the graphs of the equations about the -axis.

31.

32.

Finding the Volume of a Solid In Exercises 33–36, find
the volume of the solid generated by revolving the region
bounded by the graphs of the equations about the -axis. Verify
your results using the integration capabilities of a graphing
utility.

33.

34.

35.

36.

Finding the Volume of a Solid In Exercises 37–40, use
the integration capabilities of a graphing utility to approximate
the volume of the solid generated by revolving the region
bounded by the graphs of the equations about the -axis.

37.

38.

39.

40.

Finding the Volume of a Solid In Exercises 41–48, find
the volume generated by rotating the given region about the
specified line.

41. about 42. about 

43. about 44. about 

45. about 46. about 

47. about 48. about x � 1R2x � 0R2

x � 1R3x � 0R3

y � 1R2y � 0R2

x � 1R1x � 0R1

R2
R3

R1

0.5 1

0.5

1

x

y

y = x

y = x2

y � �2x,  y � x2

y � 2 arctan�0.2x�,  y � 0,  x � 0,  x � 5

y � ln x,  y � 0,  x � 1,  x � 3

y � e�x2,  y � 0,  x � 0,  x � 2

x

y � ex�2 � e�x�2,  y � 0,  x � �1,  x � 2

y � ex�1,  y � 0,  x � 1,  x � 2

y � cos 2x,   y � 0,   x � 0,   x �
�

4

y � sin x,   y � 0,   x � 0,   x � �

x

y � 9 � x2,  y � 0,  x � 2,  x � 3

y � 3�2 � x�,  y � 0,  x � 0

y

x � 8x � 0,y � �
1
2x � 4,y � �x,

x � 3x � 0,y � �x2 � 2x � 5,y � x2 � 1,

x � 6x � 0,y � 0,y � ex�4,

y � 1x � 0,y � 0,y � e�x,

x � 6x � 0,y � 0,y �
2

x � 1
,

x � 3x � 1,y � 0,y �
1
x
,

54. HOW DO YOU SEE IT? Use the graph to
match the integral for the volume with the axis 
of rotation.

(a) (i) -axis

(b) (ii) -axis

(c) (iii)

(d) (iv) y � bV � ��b

0
 �a � f �y��2 dy

x � aV � ��a

0
 � f �x��2 dx

yV � ��a

0
 �b2

� �b � f �x��2 � dx

xV � ��b

0
 �a2 � � f �y��2 � dy

a

b

x

y

y = f(x)

x = f(y)

WRITING ABOUT CONCEPTS
Describing a Solid In Exercises 49 and 50, the integral
represents the volume of a solid. Describe the solid.

49. 50.

51. Comparing Volumes A region bounded by the
parabola and the axis is revolved about 
the axis. A second region bounded by the parabola

and the axis is revolved about the axis.
Without integrating, how do the volumes of the two solids
compare? Explain.

52. Comparing Volumes The 
region in the figure is revolved 
about the indicated axes and line.
Order the volumes of the resulting
solids from least to greatest. 
Explain your reasoning.

(a) axis

(b) axis

(c)

53. Analyzing Statements Discuss the validity of the
following statements.

(a) For a solid formed by rotating the region under a graph
about the -axis, the cross sections perpendicular to the
-axis are circular disks.

(b) For a solid formed by rotating the region between two
graphs about the -axis, the cross sections perpendicular
to the -axis are circular disks.x

x

x
x

x � 3

y-

x-
1 2 3 4

2

4

6

8

10

y = x2

x

y

x-x-y � 4 � x2
x-

x-y � 4x � x2

� �4

2
 y4 dy� ���2

0
 sin2 x dx
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7.2 Volume: The Disk Method 455

Dividing a Solid In Exercises 55 and 56, consider the solid
formed by revolving the region bounded by and

about the -axis.

55. Find the value of in the interval that divides the solid
into two parts of equal volume.

56. Find the values of in the interval that divide the solid
into three parts of equal volume.

57. Manufacturing A manufacturer drills a hole through the
center of a metal sphere of radius The hole has a radius 
Find the volume of the resulting ring.

58. Manufacturing For the metal sphere in Exercise 57, let
What value of will produce a ring whose volume is

exactly half the volume of the sphere?

59. Volume of a Cone Use the disk method to verify that the
volume of a right circular cone is where is the radius
of the base and is the height.

60. Volume of a Sphere Use the disk method to verify that
the volume of a sphere is where is the radius.

61. Using a Cone A cone of height with a base of radius 
is cut by a plane parallel to and units above the base, where

Find the volume of the solid (frustum of a cone) below
the plane.

62. Using a Sphere A sphere of radius is cut by a plane 
units above the equator, where . Find the volume of the
solid (spherical segment) above the plane.

63. Volume of a Fuel Tank A tank on the wing of a jet 
aircraft is formed by revolving the region bounded by the
graph of and the axis about the
-axis, where and are measured in meters. Use a graphing 

utility to graph the function and find the volume of the tank.

64. Volume of a Lab Glass A glass container can be 
modeled by revolving the graph of

about the axis, where and are measured in centimeters.
Use a graphing utility to graph the function and find the 
volume of the container.

65. Finding Volumes of a Solid Find the volumes of the
solids (see figures) generated if the upper half of the ellipse

is revolved about (a) the axis to form a
prolate spheroid (shaped like a football), and (b) the axis to
form an oblate spheroid (shaped like half of a candy).

Figure for 65(a) Figure for 65(b)

67. Minimum Volume The arc of on the
interval is revolved about the line (see figure).

(a) Find the volume of the resulting solid as a function of 

(b) Use a graphing utility to graph the function in part (a), and
use the graph to approximate the value of that minimizes
the volume of the solid.

(c) Use calculus to find the value of that minimizes the
volume of the solid, and compare the result with the
answer to part (b).

Figure for 67 Figure for 68

68. Modeling Data A draftsman is asked to determine the
amount of material required to produce a machine part (see
figure). The diameters of the part at equally spaced points 
are listed in the table. The measurements are listed in
centimeters.

(a) Use these data with Simpson’s Rule to approximate the 
volume of the part.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial through the points representing
the radius of the solid. Plot the data and graph the model.

(c) Use a graphing utility to approximate the definite integral
yielding the volume of the part. Compare the result with
the answer to part (a).

x 6 7 8 9 10

d 5.8 5.4 4.9 4.4 4.6

x 0 1 2 3 4 5

d 4.2 3.8 4.2 4.7 5.2 5.7

xd

x
11

3

−3

y

3−1 4
x

4

−2

y

y = b

b

b

b.

y � b�0, 4�
y � 4 � �x2�4�

4

−4
6

x

y

x6

4

−4

y

y-
x-9x 2 � 25y 2 � 225

yxx-

y � ��0.1x3 � 2.2x2 � 10.9x � 22.2,
2.95,

     0 � x � 11.5
     11.5 < x � 15

yxx
�0 � x � 2�x-y �

1
8x2�2 � x

h < r
hr

h < H.
h

rH

r4
3�r 3,

h
r1

3�r2h,

rR � 6.

r.R.

�0, 4�x

�0, 4�x

xx � 4
y ��x, y � 0, A tank on a water tower 

is a sphere of radius 
50 feet. Determine the
depths of the water 
when the tank is filled 
to one-fourth and 
three-fourths of its total
capacity. (Note: Use the
zero or root feature of a
graphing utility after 
evaluating the definite integral.)

66. Water Tower

Paul Brennan/Shutterstock.com
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456 Chapter 7 Applications of Integration

69. Think About It Match each integral with the solid whose
volume it represents, and give the dimensions of each solid.

(a) Right circular cylinder (b) Ellipsoid

(c) Sphere (d) Right circular cone (e) Torus

(i) (ii)

(iii)

(iv)

(v)

70. Cavalieri’s Theorem Prove that if two solids have equal
altitudes and all plane sections parallel to their bases and at
equal distances from their bases have equal areas, then the
solids have the same volume (see figure).

Area of 

71. Using Cross Sections Find the volumes of the solids
whose bases are bounded by the graphs of and

with the indicated cross sections taken 
perpendicular to the axis.

(a) Squares (b) Rectangles of height 1

72. Using Cross Sections Find the volumes of the solids
whose bases are bounded by the circle with the
indicated cross sections taken perpendicular to the axis.

(a) Squares (b) Equilateral triangles

(c) Semicircles (d) Isosceles right triangles

73. Using Cross Sections Find the volume of the solid of
intersection (the solid common to both) of the two right 
circular cylinders of radius whose axes meet at right angles
(see figure).

Two intersecting cylinders Solid of intersection

74. Using Cross Sections The solid shown in the figure has
cross sections bounded by the graph of where

(a) Describe the cross section when and 

(b) Describe a procedure for approximating the volume of the
solid.

75. Volume of a Wedge Two planes cut a right circular
cylinder to form a wedge. One plane is perpendicular to the
axis of the cylinder and the second makes an angle of 
degrees with the first (see figure).

(a) Find the volume of the wedge if 

(b) Find the volume of the wedge for an arbitrary angle 
Assuming that the cylinder has sufficient length, how does
the volume of the wedge change as increases from 
to 

Figure for 75 Figure for 76

76. Volume of a Torus

(a) Show that the volume of the torus shown in the figure is
given by the integral where

(b) Find the volume of the torus.

R > r > 0.
8� R  r

0  �r2 � y2 dy,

x

y

R r

y

x θ

90
?
0
�
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� � 45
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a � 2.a � 1
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�x�a � �y�a � 1,

y

x

r

x
y

2 2y
x 2 2

y
x

22y
x

22

x-
x2 � y 2 � 4,

x

y

2
1

−1

y

x

−1
1

2

x-
y � x2 � 1,

y � x � 1

R1 � area of R2

h

R1

R2

��r

�r

 ��R � �r2 � x2 �2
� �R � �r2 � x2 �2� dx

��b

�b

 �a�1 �
x2

b2 �
2

dx

��r

�r

 ��r2 � x2 �2 dx

��h

0
 r2 dx��h

0
 �rx

h �2
 dx

11 y

x

y

x

y

x

⏐ ⏐ ⏐ ⏐x 2 +  y 2 = 1⏐ ⏐ ⏐ ⏐x a +  y a = 1⏐ ⏐ ⏐ ⏐x 1 +  y 1 = 1

FOR FURTHER INFORMATION For more information on
this problem, see the article “Estimating the Volumes of Solid
Figures with Curved Surfaces” by Donald Cohen in Mathematics
Teacher. To view this article, go to MathArticles.com.
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7.3 Volume: The Shell Method 457

7.3 Volume: The Shell Method

Find the volume of a solid of revolution using the shell method.
Compare the uses of the disk method and the shell method.

The Shell Method
In this section, you will study an alternative method for finding the volume of a solid
of revolution. This method is called the shell method because it uses cylindrical shells.
A comparison of the advantages of the disk and shell methods is given later in this
section.

To begin, consider a representative rectangle as shown in Figure 7.27, where is
the width of the rectangle, is the height of the rectangle, and is the distance between
the axis of revolution and the center of the rectangle. When this rectangle is revolved
about its axis of revolution, it forms a cylindrical shell (or tube) of thickness To find
the volume of this shell, consider two cylinders. The radius of the larger cylinder 
corresponds to the outer radius of the shell, and the radius of the smaller cylinder 
corresponds to the inner radius of the shell. Because is the average radius of the shell,
you know the outer radius is

Outer radius

and the inner radius is

Inner radius

So, the volume of the shell is

You can use this formula to find the volume of a solid of revolution. For instance,
the plane region in Figure 7.28 is revolved about a line to form the indicated solid.
Consider a horizontal rectangle of width As the plane region is revolved 
about a line parallel to the axis, the rectangle generates a representative shell whose
volume is

You can approximate the volume of the solid by such shells of thickness height
and average radius 

This approximation appears to become better and better as So, the
volume of the solid is

 � 2� �d

c

 �p�y�h�y�� dy.

 Volume of solid � lim
���→0

 2��
n

i�1
�p�yi�h�yi�� �y

��� →  0 �n →  ��.

 Volume of solid 	 �
n

i�1
2� � p�yi�h�yi�� �y � 2��

n

i�1
� p� yi�h� yi�� �y

p�yi�.h�yi�,
�y,n

     �V � 2� � p�y�h�y�� �y.     

x-
�y.

 � 2� �average radius��height��thickness�.
 � 2�phw

 � �
p �
w
2�

2
h � �
p �

w
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2
h

 Volume of shell � �volume of cylinder� � �volume of hole�

p �
w
2

.

p �
w
2
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Axis of revolution

p −
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2

h

Figure 7.27

d

cp(y)

Δy

Plane region

h(y)

Solid of revolution

Axis of
revolution

Figure 7.28
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Horizontal axis of revolution Vertical axis of revolution
Figure 7.29

Using the Shell Method to Find Volume

Find the volume of the solid of revolution formed by revolving the region bounded by 

and the axis about the axis.

Solution Because the axis of revolution is 
vertical, use a vertical representative rectangle,
as shown in Figure 7.30. The width indicates
that is the variable of integration. The distance
from the center of the rectangle to the axis of 
revolution is and the height of the 
rectangle is 

Because ranges from 0 to 1, apply the shell
method to find the volume of the solid.

Simplify.

Integrate.

 �
4�

15

 � 2� 
�
1
5

�
1
3�

 � 2� ��
x5

5
�

x3

3 
1

0

 � 2� �1

0
 ��x4 � x2� dx

 � 2��1

0
 x�x � x3� dx

 V � 2� �b

a

 p�x�h�x� dx

x

h�x� � x � x3.

p�x� � x,

x
�x

y-�0 � x � 1�x-

y � x � x3

ba

Δx

h(x)

p(x)

d

c

Δy

p(y)

h(y)

458 Chapter 7 Applications of Integration

THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of the
formulas below. (See Figure 7.29.)

Horizontal Axis of Revolution Vertical Axis of Revolution

Volume � V � 2��b

a

 p�x�h�x� dxVolume � V � 2��d

e

 p�y�h�y� dy

x

h(x) = x − x3

p(x) = x

Δx

(1, 0)

Axis of
revolution

y = x − x3

y

Figure 7.30
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Using the Shell Method to Find Volume

Find the volume of the solid of revolution formed by revolving the region bounded by
the graph of

and the axis about the axis.

Solution Because the axis of revolution is horizontal, use a horizontal representative
rectangle, as shown in Figure 7.31. The width indicates that is the variable of 
integration. The distance from the center of the rectangle to the axis of revolution is

and the height of the rectangle is Because ranges from 0 to 1,
the volume of the solid is

Apply shell method.

Integrate.

Comparison of Disk and Shell Methods
The disk and shell methods can be distinguished as follows. For the disk method, the
representative rectangle is always perpendicular to the axis of revolution, whereas
for the shell method, the representative rectangle is always parallel to the axis of
revolution, as shown in Figure 7.32.

 	 1.986.

 � � 
1 �
1
e�

 � ���e�y 2
1

0

 � 2� �1

0
 ye�y2

 dy

 V � 2� �d

c

 p�y�h�y� dy

yh�y� � e�y 2
.p�y� � y,

y�y

x-�0 � y � 1�y-

x � e�y 2
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c

d

Δy

c

d
V = 2π ∫ ph dy

xh

p

y

Horizontal axis of revolution

a b

Δx

a

b
V = π ∫ (R2 − r2) dx

x

R

r

y

Horizontal axis of revolution

c

d

Δy

c

d
V = π ∫ (R2 − r2) dy

xR

r

y

Vertical axis of revolution

Disk method: Representative rectangle is
perpendicular to the axis of revolution.

Figure 7.32

a b

Δx

a

b
V = 2π ∫ ph dx

x

h

p

y

Vertical axis of revolution

Shell method: Representative rectangle is
parallel to the axis of revolution.

Exploration

To see the advantage of using the shell method in Example 2, solve the 
equation for 

Then use this equation to find the volume using the disk method.

y � �1,
��ln x,

     0 � x � 1�e
     1�e < x � 1

y.x � e�y2

x

h(y) = e−y2
p(y) = y

Δy

Axis of
revolution

x = e−y2
1

y

Figure 7.31
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Often, one method is more convenient to use than the other. The next example 
illustrates a case in which the shell method is preferable.

Shell Method Preferable

See LarsonCalculus.com for an interactive version of this type of example.

Find the volume of the solid formed by revolving the region bounded by the graphs of 

and

about the axis.

Solution In Example 4 in Section 7.2, you saw that the washer method requires two
integrals to determine the volume of this solid. See Figure 7.33(a).

Apply washer method.

Simplify.

Integrate.

In Figure 7.33(b), you can see that the shell method requires only one integral to find
the volume.

Apply shell method.

Integrate.

Consider the solid formed by revolving the region in Example 3 about the vertical
line Would the resulting solid of revolution have a greater volume or a smaller
volume than the solid in Example 3? Without integrating, you should be able to reason
that the resulting solid would have a smaller volume because “more” of the revolved
region would be closer to the axis of revolution. To confirm this, try solving the 
integral

which gives the volume of the solid.

p�x� � 1 � xV � 2� �1

0
 �1 � x��x2 � 1� dx

x � 1.

 �
3�

2

 � 2� 
3
4�

 � 2� �x4

4
�

x2

2 
1

0

 � 2� �1

0
 x�x2 � 1� dx 

 V � 2� �b

a

 p�x�h�x� dx

 �
3�

2

 � � � �
4 � 2 � 2 �
1
2�

 � ��y
1

0
� � �2y �

y2

2 
2

1

 � � �1

0
 1 dy � � �2

1
 �2 � y� dy

 V � � �1

0
 �12 � 02� dy � � �2

1
 �12 � ��y � 1 �2� dy

y-

x � 1x � 0,y � 0,y � x2 � 1,

460 Chapter 7 Applications of Integration

FOR FURTHER INFORMATION To learn more about the disk and shell methods,
see the article “The Disk and Shell Method” by Charles A. Cable in The American
Mathematical Monthly. To view this article, go to MathArticles.com.

x

Axis of
revolution

1

1

2

r

(1, 2)

Δy

Δy

For 0 ≤ y ≤ 1:
R = 1
r = 0

For 1 ≤ y ≤ 2:
R = 1
r =     y − 1

y

(a) Disk method

x

Axis of
revolution

h(x) = x2 + 1

1

1

2

p(x) = x

(1, 2)

Δx

y

(b) Shell method

Figure 7.33
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Volume of a Pontoon

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed
by rotating the graph of

about the axis, where and are measured in feet. Find the volume of the pontoon.

Solution Refer to Figure 7.35 and use the disk method as shown.

Apply disk method.

Simplify.

Integrate.

To use the shell method in Example 4, you would have to solve for in terms of 
in the equation 

and then evaluate an integral that requires a -substitution.
Sometimes, solving for is very difficult (or even impossible). In such cases, you

must use a vertical rectangle (of width ), thus making the variable of integration.
The position (horizontal or vertical) of the axis of revolution then determines the
method to be used. This is shown in Example 5.

Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of
and about the line as shown in Figure 7.36.

Solution In the equation you cannot easily solve for in terms of
(See the discussion at the end of Section 3.8.) Therefore, the variable of integration

must be and you should choose a vertical representative rectangle. Because the 
rectangle is parallel to the axis of revolution, use the shell method.

Apply shell method.

Simplify.

Integrate.
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8 ft

2 ft

Figure 7.34

x
−1−2−3−4 1

2

2

3

3 4

R(x) = 1 −
r (x) = 0

x2

16

Δx

y

Disk method
Figure 7.35

Axis of
revolution

1

2

2

3

p(x) = 2 − x

Δx

(1, 3)

x

y

h(x) = x3 + x + 1 − 1

Figure 7.36
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462 Chapter 7 Applications of Integration

Finding the Volume of a Solid In Exercises 1–14, use the
shell method to set up and evaluate the integral that gives the
volume of the solid generated by revolving the plane region
about the -axis.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11.

12.

13.

14.

Finding the Volume of a Solid In Exercises 15–22, use
the shell method to set up and evaluate the integral that gives
the volume of the solid generated by revolving the plane region
about the -axis.

15. 16.

17. 18.

19. 20.

21.

22.

Finding the Volume of a Solid In Exercises 23–26, use
the shell method to find the volume of the solid generated by
revolving the plane region about the given line.

23. about the line 

24. about the line 

25. about the line 

26. about the line 

Choosing a Method In Exercises 27 and 28, decide
whether it is more convenient to use the disk method or the
shell method to find the volume of the solid of revolution.
Explain your reasoning. (Do not find the volume.)

27. 28.

Choosing a Method In Exercises 29–32, use the disk
method or the shell method to find the volumes of the solids
generated by revolving the region bounded by the graphs of the
equations about the given lines.

29.

(a) the axis (b) the axis (c) the line 

30.

(a) the axis (b) the axis (c) the line y � 10y-x-

x � 5x � 1,y � 0,y �
10
x2 ,

x � 4y-x-

x � 2y � 0,y � x3,

−1−2−3 1 2 3

2

1

3

4

5

x

y

−1 1 2 3 4−1

1

2

3

5

x

y

y � 4 � ex� y � 2�2 � 4 � x

x � 3y � 6x � x2,y �
1
3

x3,

x � 4y � 4x � x2,y � x2,

x � 6x � 4,y � 0,y � �x,

x � 4y � 0,y � 2x � x2,

y � �x � 2,  y � x,  y � 0

x � y � 4,  y � x,  y � 0

y � 4x � 0,y � 4x2,y � x3,  x � 0,  y � 8

4 8 12
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1 2

1

1
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x � �x � 0,y � 0,y � �
sin x

x
,     x > 0

1,           x � 0
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�2�
 e�x2�2,

y � 0y � �x2 � 1,
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x � 0y � 8,y � x3�2,

y � 4x � 0,y � 4x � x2,
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7.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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7.3 Volume: The Shell Method 463

31.

(a) the axis (b) the axis (c) the line 

32. (hypocycloid)

(a) the axis (b) the axis

Finding the Volume of a Solid In Exercises 33–36,
(a) use a graphing utility to graph the plane region bounded by
the graphs of the equations, and (b) use the integration 
capabilities of the graphing utility to approximate the volume
of the solid generated by revolving the region about the -axis.

33. first quadrant

34.

35.

36.

Analyzing an Integral In Exercises 43–46, the integral
represents the volume of a solid of revolution. Identify (a) the
plane region that is revolved and (b) the axis of revolution.

43. 44.

45. 46.

47. Machine Part A solid is generated by revolving the region
bounded by and about the axis. A hole,
centered along the axis of revolution, is drilled through this
solid so that one-fourth of the volume is removed. Find the
diameter of the hole.

48. Machine Part A solid is generated by revolving the region
bounded by and about the axis. A hole,
centered along the axis of revolution, is drilled through this
solid so that one-third of the volume is removed. Find the
diameter of the hole.

49. Volume of a Torus A torus is formed by revolving the
region bounded by the circle about the line 
(see figure). Find the volume of this “doughnut-shaped” solid.
(Hint: The integral represents the area of a
semicircle.)

x

1

1 2

−1

−1

y

�1
�1 �1 � x2 dx

x � 2x2 � y 2 � 1

y-y � 0y � �9 � x2

y-y � 2y �
1
2x2

2��1

0
 �4 � x�ex dx2� �6

0
 �y � 2��6 � y dy

2� �1

0
 y � y3�2 dy2� �2

0
 x3 dx

x � 3x � 1,y � 0,y �
2

1 � e1�x,

x � 6x � 2,y � 0,y � 3��x � 2�2�x � 6�2,

x � 0y � 0,y � �1 � x3,

y � 0,x � 0,x 4�3 � y4�3 � 1,

y

y-x-

a > 0x2�3 � y2�3 � a2�3,

x � ay-x-

y � 0x � 0,x1�2 � y1�2 � a1�2,
42. HOW DO YOU SEE IT? Use the graph to

answer the following.

(a) Describe the figure generated by revolving segment
about the -axis.

(b) Describe the figure generated by revolving segment
about the -axis.

(c) Assume the curve in the figure can be described as
or A solid is generated by 

revolving the region bounded by the curve,
and about the -axis. Set up integrals to find
the volume of this solid using the disk method and
the shell method. (Do not integrate.)

yx � 0
y � 0,

x � g�y�.y � f �x)

yBC

yAB

y = f (x)

x = g(y)

x

y

2.45C

B

3

A

WRITING ABOUT CONCEPTS
37. Representative Rectangles Consider a solid that is

generated by revolving a plane region about the -axis.
Describe the position of a representative rectangle when
using (a) the shell method and (b) the disk method to find
the volume of the solid.

38. Describing Cylindrical Shells Consider the plane
region bounded by the graphs of

and

where and What are the heights and radii of
the cylinders generated when this region is revolved about
(a) the -axis and (b) the -axis?

Comparing Integrals In Exercises 39 and 40, give a 
geometric argument that explains why the integrals have
equal values.

39.

40.

41. Comparing Volumes The region in the figure is
revolved about the indicated axes and line. Order the 
volumes of the resulting solids from least to greatest.
Explain your reasoning.

(a) axis (b) axis (c)

y = x2/5

1 2 3 4

1

2

3

4

x

y

x � 4y-x-

2� �4

0
 x
x

2� dx� �2

0
 �16 � �2y�2� dy �

2� �2

0
 y�5 � �y 2 � 1�� dy��5

1
 �x � 1� dx �

yx

b > 0.k > 0

x � bx � 0,y � 0,y � k,

y
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464 Chapter 7 Applications of Integration

50. Volume of a Torus Repeat Exercise 49 for a torus formed
by revolving the region bounded by the circle 
about the line where 

51. Finding Volumes of Solids

(a) Use differentiation to verify that

(b) Use the result of part (a) to find the volume of the solid
generated by revolving each plane region about the -axis.

(i) (ii)

52. Finding Volumes of Solids

(a) Use differentiation to verify that

(b) Use the result of part (a) to find the volume of the solid
generated by revolving each plane region about the -axis.
(Hint: Begin by approximating the points of intersection.)

(i) (ii)

53. Volume of a Segment of a Sphere Let a sphere of
radius be cut by a plane, thereby forming a segment of height

Show that the volume of this segment is 

54. Volume of an Ellipsoid Consider the plane region
bounded by the graph of

where and Show that the volume of the ellipsoid
formed when this region is revolved about the -axis is

What is the volume when the region is revolved about the 
-axis?

55. Exploration Consider the region bounded by the graphs of
and (see figure).

(a) Find the ratio of the area of the region to the area of
the circumscribed rectangle.

(b) Find and compare the result with the area of the

circumscribed rectangle.

(c) Find the volume of the solid of revolution formed by
revolving the region about the axis. Find the ratio 
of this volume to the volume of the circumscribed right
circular cylinder.

(d) Find and compare the result with the volume of

the circumscribed cylinder.

(e) Use the results of parts (b) and (d) to make a conjecture
about the shape of the graph of as

56. Think About It Match each integral with the solid whose
volume it represents, and give the dimensions of each solid.

(a) Right circular cone (b) Torus (c) Sphere

(d) Right circular cylinder (e) Ellipsoid

(i) (ii)

(iii) (iv)

(v)

57. Volume of a Storage Shed A storage shed has a 
circular base of diameter 80 feet. Starting at the center, the
interior height is measured every 10 feet and recorded in the
table (see figure).

(a) Use Simpson’s Rule to approximate the volume of the shed.

(b) Note that the roof line consists of two line segments. Find
the equations of the line segments and use integration to
find the volume of the shed.

H
ei

gh
t

Distance from center

10

10

20

20

30

30

40

40

50

50

x

y
x Height

0 50

10 45

20 40

30 20

40 0

2� �r

�r

 �R � x��2�r2 � x2 � dx

2� �b

0
 2ax �1 �

x2

b2  dx2� �r

0
 2x�r2 � x2 dx

2� �r

0
 hx 
1 �

x
r� dx2� �r

0
 hx dx

n →�.
�0 � x � b�y � axn

lim
n→�

 R2�n�

R2�n�y-

lim
n→�

 R1�n�

R1�n�

x

abn

b

y

y = axn

x � 0y � abn,y � axn,

x

4
3

 �a2b.

y
b > 0.a > 0


x
a�

2

� 
y
b�

2

� 1

1
3

�h2�3r � h�.

h.
r

y = 4 cos x

y = (x − 2)2

x

y

−1−2 1 2 3

1

2

3

y = cos x

y = x2

x

y

−0.5
−1 0.5 1 1.5

0.5

1.5

2

y

� x cos x dx � cos x � x sin x � C.

x

y

π

1

2

y = 2 sin x

y = −sin x

0.5

1.0

x

y

π π3
4

π
2

−

y = sin x

π
4

π
4

y

� x sin x dx � sin x � x cos x � C.

r < R.x � R,
x2 � y 2 � r2
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7.3 Volume: The Shell Method 465

58. Modeling Data A pond is approximately circular, with a
diameter of 400 feet. Starting at the center, the depth of the
water is measured every 25 feet and recorded in the table (see
figure).

(a) Use Simpson’s Rule to approximate the volume of water in
the pond.

(b) Use the regression capabilities of a graphing utility to find
a quadratic model for the depths recorded in the table. Use
the graphing utility to plot the depths and graph the model.

(c) Use the integration capabilities of a graphing utility and
the model in part (b) to approximate the volume of water
in the pond.

(d) Use the result of part (c) to approximate the number of 
gallons of water in the pond. (Hint: 1 cubic foot of water
is approximately 7.48 gallons.)

59. Equal Volumes Let and be the volumes of the 
solids that result when the plane region bounded by 

and is revolved about the 
-axis and the -axis, respectively. Find the value of for

which 

60. Volume of a Segment of a Paraboloid The region
bounded by and is revolved about
the -axis to form a paraboloid. A hole, centered along the axis
of revolution, is drilled through this solid. The hole has a
radius Find the volume of the resulting ring 
(a) by integrating with respect to and (b) by integrating with
respect to 

61. Finding Volumes of Solids Consider the graph of
(see figure). Find the volumes of the solids that

are generated when the loop of this graph is revolved about (a)
the -axis, (b) the -axis, and (c) the line 

1 2 3 4 5 6 7

−2
−1

−3
−4

1
2
3
4

x

y
y2 = x(4 − x)2

x � 4.yx

y2 � x�4 � x�2

y.
x

0 < k < r.k,

y
x � 0y � 0,y � r2 � x2,

V1 � V2.
cyx

x � c �where c > 1
4�x �

1
4,y � 0,

y � 1�x,
V2V1

D
ep

th

Distance from center

10
8
6
4
2

20
18
16
14
12

50 100 150 200
x

y
x 0 25 50

Depth 20 19 19

x 75 100 125

Depth 17 15 14

x 150 175 200

Depth 10 6 0

The Oblateness of Saturn Saturn is the most oblate of the 
planets in our solar system. Its equatorial radius is 60,268 kilometers
and its polar radius is 54,364 kilometers. The color-enhanced 
photograph of Saturn was taken by Voyager 1. In the photograph,
the oblateness of Saturn is clearly visible.

(a) Find the ratio of the volumes of the sphere and the oblate 
ellipsoid shown below.

(b) If a planet were spherical and had the same volume as Saturn,
what would its radius be?

Computer model of 
“spherical Saturn,” whose
equatorial radius is equal 
to its polar radius. The
equation of the cross 
section passing through 
the pole is 

Computer model of 
“oblate Saturn,” whose
equatorial radius is greater
than its polar radius. 
The equation of the 
cross section passing
through the pole is

x2

60,2682 �
y2

54,3642 � 1.

x2 � y2 � 60,2682.

Saturn

NASA
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466 Chapter 7 Applications of Integration

7.4 Arc Length and Surfaces of Revolution

Find the arc length of a smooth curve.
Find the area of a surface of revolution.

Arc Length
In this section, definite integrals are used to find the arc lengths of curves and the areas
of surfaces of revolution. In either case, an arc (a segment of a curve) is approximated
by straight line segments whose lengths are given by the familiar Distance Formula

A rectifiable curve is one that has a finite arc length. You will see that a sufficient
condition for the graph of a function to be rectifiable between is
that be continuous on Such a function is continuously differentiable on 
and its graph on the interval is a smooth curve.

Consider a function that is continuously differentiable on the interval
You can approximate the graph of by line segments whose endpoints are

determined by the partition

as shown in Figure 7.37. By letting and you can
approximate the length of the graph by

This approximation appears to become better and better as So, the
length of the graph is

Because exists for each in the Mean Value Theorem guarantees the
existence of in such that

Because is continuous on it follows that is also continuous (and
therefore integrable) on which implies that

where is called the arc length of between and b.afs

 � �b

a

�1 � � f��x��2 dx

 s � lim
���→0

 	
n

i�1

�1 � � f��ci��2 �� xi�

�a, b�,
�1 � � f��x��2�a, b�,f�

 
�yi

�xi

� f��ci�.

 
f �xi� � f �xi�1�

xi � xi�1
� f� �ci�

 f�xi� � f�xi�1� � f��ci��xi � xi�1�

�xi�1, xi�ci

�xi�1, xi�,xf��x�

s � lim
���→0

 	
n

i�1
�1 � 
�yi

�xi
�2

 �� xi�.

��� → 0 �n →��.

 � 	
n

i�1
�1 � 
�yi

�xi
�2

 �� xi�.

 � 	
n

i�1
���xi�2 � 
�yi

�xi
�

2

��xi�2

 � 	
n

i�1

���xi�2 � ��yi�2

s � 	
n

i�1

��xi � xi�1�2 � �yi � yi�1�2

�yi � yi � yi�1,�xi � xi � xi�1

a � x0 < x1 < x2 < .  .  . < xn � b

nf�a, b�.
y � f �x�

�a, b�
�a, b�,�a, b�.f�

�a, f �a�� and �b, f �b��f

d � ��x2 � x1�2 � �y2 � y1�2.

CHRISTIAN HUYGENS (1629–1695)

The Dutch mathematician
Christian Huygens, who invented
the pendulum clock, and James
Gregory (1638–1675), a Scottish
mathematician, both made early
contributions to the problem of
finding the length of a rectifiable
curve.
See LarsonCalculus.com to read
more of this biography.

x
a b

s = length of

s
y = f(x)

curve from
a to b

y

Figure 7.37

x
a = x0 b = xnx1 x2

(xn, yn)
(x0, y0)

(x1, y1)
(x2, y2)

Δy = y2 − y1

Δx = x2 − x1

y

Bettmann/Corbis
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Because the definition of arc length can be applied to a linear function, you can
check to see that this new definition agrees with the standard Distance Formula for the
length of a line segment. This is shown in Example 1.

The Length of a Line Segment

Find the arc length from to on the graph of

as shown in Figure 7.38.

Solution Because

it follows that

Formula for arc length

Integrate and simplify.

which is the formula for the distance between two points in the plane.

 � ��x2 � x1�2 � �y2 � y1�2

 ���x2 � x1�2 � � y2 � y1�2

�x2 � x1�2  �x2 � x1�

 ���x2 � x1�2 � �y2 � y1�2

�x2 � x1�2  �x�
x2

x1

 � �x2

x1

 �1 � 
y2 � y1

x2 � x1
�

2

 dx

 s � �x2

x1

 �1 � � f� �x��2 dx

m � f��x� �
y2 � y1

x2 � x1

f �x� � mx � b

�x2, y2��x1, y1�
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Definition of Arc Length

Let the function represent a smooth curve on the interval The 
arc length of between and is

Similarly, for a smooth curve the arc length of between and is

s � �d

c

 �1 � �g��y��2 dy.

dcgx � g�y�,

s � �b

a

 �1 � � f��x��2 dx.

baf
�a, b�.y � f �x�

FOR FURTHER INFORMATION To see how arc length can be used to define
trigonometric functions, see the article “Trigonometry Requires Calculus, Not Vice
Versa” by Yves Nievergelt in UMAP Modules.

x

x2 − x1

y2 − y1

f(x) = mx + b

(x1, y1)

(x2, y2)

y

The formula for the arc length of the
graph of from to is the
same as the standard Distance Formula.
Figure 7.38

�x2, y2��x1, y1�f

TECHNOLOGY Definite integrals representing arc length often are very 
difficult to evaluate. In this section, a few examples are presented. In the next 
chapter, with more advanced integration techniques, you will be able to tackle more
difficult arc length problems. In the meantime, remember that you can always use a
numerical integration program to approximate an arc length. For instance, use the
numerical integration feature of a graphing utility to approximate arc lengths in
Examples 2 and 3.
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Finding Arc Length

Find the arc length of the graph of 

on the interval as shown in Figure 7.39.

Solution Using

yields an arc length of

Formula for arc length

Simplify.

Integrate.

Finding Arc Length

Find the arc length of the graph of on the interval as shown in
Figure 7.40.

Solution Begin by solving for in terms of Choosing the
positive value of produces 

The interval corresponds to the interval and the arc length is

Formula for arc length

Simplify.

Integrate.

 � 9.073.
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321

2

1

x

1
2x6

x3
y = +

y

The arc length of the graph of on

Figure 7.39
�1

2, 2�
y

1 2 3 4 5 6 7 8

1

2

3

4

5

x

(y − 1)3 = x2

(0, 1)

(8, 5)
y

The arc length of the graph of on

Figure 7.40
�0, 8�

y
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Finding Arc Length

See LarsonCalculus.com for an interactive version of this type of example.

Find the arc length of the graph of

from to as shown in Figure 7.41.

Solution Using

yields an arc length of

Formula for arc length

Trigonometric identity

Simplify.

Integrate.

Length of a Cable

An electric cable is hung between two towers that are 200 feet apart, as shown in 
Figure 7.42. The cable takes the shape of a catenary whose equation is

Find the arc length of the cable between the two towers.

Solution Because you can write

and

Therefore, the arc length of the cable is

Formula for arc length

Integrate.

 � 215 feet.

 � 150�e2�3 � e�2�3�

 � 75�ex�150 � e�x�150
100

�100

 �
1
2�

100

�100
 �ex�150 � e�x�150� dx

 s � �b

a

�1 � �y��2 dx

1 � �y��2 �
1
4

�ex�75 � 2 � e�x�75� � �1
2

�ex�150 � e�x�150�
2

.

�y� �2 �
1
4

�ex�75 � 2 � e�x�75�

y� �
1
2 �ex�150 � e�x�150�,

y � 75�ex�150 � e�x�150� � 150 cosh 
x

150
.

 � 0.881.

 � ln��2 � 1� � ln 1

 � �ln�sec x � tan x�
��4

0

 � ���4

0
 sec x dx

 � ���4

0

�sec2 x dx

 � ���4

0

�1 � tan2 x dx

 s � �b

a
�1 � 
dy

dx�
2

 dx

dy
dx

� �
sin x
cos x

� �tan x

x � ��4,x � 0

y � ln�cos x�
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x

−1

y = ln(cos x)

π
2

π
2

−

y

The arc length of the graph of on

Figure 7.41

�0, 
�

4
y

x

y

x
150

Catenary:
y = 150 cosh

150

−100 100

Figure 7.42

9781285774770_0704.qxp  8/23/13  3:07 PM  Page 469

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Area of a Surface of Revolution
In Sections 7.2 and 7.3, integration was used to calculate the volume of a solid
of revolution. You will now look at a procedure for finding the area of a surface of
revolution.

The area of a surface of revolution is 
derived from the formula for the lateral surface
area of the frustum of a right circular cone.
Consider the line segment in the figure at the 
right, where is the length of the line segment,

is the radius at the left end of the line segment,
and is the radius at the right end of the line 
segment. When the line segment is revolved 
about its axis of revolution, it forms a frustum 
of a right circular cone, with

Lateral surface area of frustum

where

Average radius of frustum

(In Exercise 54, you are asked to verify the formula for )
Consider a function that has a continuous derivative on the interval The

graph of is revolved about the axis to form a surface of revolution, as shown in
Figure 7.43. Let be a partition of with subintervals of width Then the line
segment of length

generates a frustum of a cone. Let be the average radius of this frustum. By the
Intermediate Value Theorem, a point exists (in the subinterval) such that

The lateral surface area of the frustum is

Figure 7.43

Axis of
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Δxi

a = x0 xi
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 �xi .

 � 2� f �di���xi
2 � �yi
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 �Si � 2�ri �Li
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ri � f �di�.

ithdi

ri

�Li � ��xi
2 � �yi

2

�xi.�a, b�,�
x-f

�a, b�.f
S.

r �
1
2

�r1 � r2�.

S � 2�rL

r2

r1

L

470 Chapter 7 Applications of Integration

Definition of Surface of Revolution

When the graph of a continuous function is revolved about a line, the resulting
surface is a surface of revolution.

Axis of
revolution

L

r1

r2
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By the Mean Value Theorem, a point exists in such that

So, and the total surface area can be approximated
by

It can be shown that the limit of the right side as is

In a similar manner, if the graph of is revolved about the axis, then is

In these two formulas for you can regard the products and as the 
circumferences of the circles traced by a point on the graph of as it is revolved
about the -axis and the axis (Figure 7.44). In one case, the radius is and in
the other case, the radius is Moreover, by appropriately adjusting you can 
generalize the formula for surface area to cover any horizontal or vertical axis of 
revolution, as indicated in the next definition.

The formulas in this definition are sometimes written as

is a function of

and

is a function of 

where

and

respectively.

ds � �1 � �g��y��2 dy,ds � �1 � � f��x��2 dx
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 r�y) ds
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��� → 0 �n →  ��
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 �
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�xi

.

 f��ci� �
f �xi� � f �xi�1�

xi � xi�1

�xi�1, xi�ci
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Definition of the Area of a Surface of Revolution

Let have a continuous derivative on the interval The area of the
surface of revolution formed by revolving the graph of about a horizontal or 
vertical axis is

is a function of 

where is the distance between the graph of and the axis of revolution. If
on the interval then the surface area is

is a function of 

where is the distance between the graph of and the axis of revolution.gr�y�

y.xS � 2� �d

c

 r�y��1 � �g��y��2 dy

�c, d�,x � g�y�
fr�x�

x.yS � 2� �b

a

 r �x��1 � � f��x��2 dx

f
S�a, b�.y � f �x�

x

(x, f(x))

r = f(x)

y = f(x)

a bAxis of
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Figure 7.44
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The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of on the interval
about the axis, as shown in Figure 7.45.

Solution The distance between the axis and the graph of is , and
because the surface area is

Formula for surface area

Simplify.

Integrate.

The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of on the interval
about the axis, as shown in the figure below.

Solution In this case, the distance between the graph of and the axis is 
Using and the formula for surface area, you can determine that

Simplify.

Integrate.

 � 13.614.
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Axis of
revolution

1

1

−1

f(x) = x3

r (x) = f (x)

x

(1, 1)

y

Figure 7.45
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7.4 Arc Length and Surfaces of Revolution 473

7.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding Distance Using Two Methods In Exercises 1
and 2, find the distance between the points using (a) the
Distance Formula and (b) integration.

1. 2.

Finding Arc Length In Exercises 3–16, find the arc length
of the graph of the function over the indicated interval.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

Finding Arc Length In Exercises 17–26, (a) sketch the
graph of the function, highlighting the part indicated by the
given interval, (b) find a definite integral that represents the
arc length of the curve over the indicated interval and observe
that the integral cannot be evaluated with the techniques 
studied so far, and (c) use the integration capabilities of a
graphing utility to approximate the arc length.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Approximation In Exercises 27 and 28, determine which
value best approximates the length of the arc represented by
the integral. (Make your selection on the basis of a sketch of the
arc, not by performing any calculations.)

27.

(a) 25 (b) 5 (c) 2 (d) (e) 3

28.

(a) 3 (b) (c) 4 (d) (e) 1

Approximation In Exercises 29 and 30, approximate the
arc length of the graph of the function over the interval in
four ways. (a) Use the Distance Formula to find the distance
between the endpoints of the arc. (b) Use the Distance Formula
to find the lengths of the four line segments connecting the
points on the arc when and 
Find the sum of the four lengths. (c) Use Simpson’s Rule with

to approximate the integral yielding the indicated arc
length. (d) Use the integration capabilities of a graphing utility
to approximate the integral yielding the indicated arc length.

29. 30.

31. Length of a Catenary Electrical wires suspended
between two towers form a catenary (see figure) modeled by
the equation

where and are measured in meters. The towers are 40 meters
apart. Find the length of the suspended cable.
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474 Chapter 7 Applications of Integration

32. Roof Area A barn is 100 feet long and 40 feet wide (see
figure). A cross section of the roof is the inverted catenary

Find the number of square feet
of roofing on the barn.

33. Length of Gateway Arch The Gateway Arch in St.
Louis, Missouri, is modeled by

(See Section 5.9, Section Project: St. Louis Arch.) Use the 
integration capabilities of a graphing utility to approximate the
length of this curve (see figure).

Figure for 33 Figure for 34

34. Astroid Find the total length of the graph of the astroid

35. Arc Length of a Sector of a Circle Find the arc length
from clockwise to along the circle 

36. Arc Length of a Sector of a Circle Find the arc length
from clockwise to along the circle

Show that the result is one-fourth the
circumference of the circle.

Finding the Area of a Surface of Revolution In
Exercises 37–42, set up and evaluate the definite integral for
the area of the surface generated by revolving the curve about
the -axis.

37. 38.

39.

40.

41.

42.

Finding the Area of a Surface of Revolution In
Exercises 43–46, set up and evaluate the definite integral for
the area of the surface generated by revolving the curve about
the -axis.

43. 44.

45. 46.

Finding the Area of a Surface of Revolution In
Exercises 47 and 48, use the integration capabilities of a 
graphing utility to approximate the surface area of the solid of
revolution.

Function Interval Axis of Revolution

47. -axis

48. -axisy�1, e�y � ln x

x�0, ��y � sin x

1 	 x 	 5y �
x
2

� 3,0 	 x 	 2y � 1 �
x2

4
,

y

x
2

9

4−4 −2

y = 9 − x2
y

x
−2−4−6−8 2

1

2

4

4 6 8

y =  3 x + 2

y � 9 � x2y � 3�x � 2

y

�2 	 x 	 2y � �9 � x2,

�1 	 x 	 1y � �4 � x2,

0 	 x 	 3y � 3x,

1 	 x 	 2y �
x3

6
�

1
2x

,
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x
2 4 6 8

−6

−4

−2

2

4

6
y = 2   x
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x

−4

−1

2

1 3

8
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−6
−8

−10

y =   x31
3

y � 2�xy �
1
3

x3

x

x2 � y2 � 25.
�4, 3���3, 4�

x2 � y2 � 9.�2, �5��0, 3�

x2�3 � y2�3 � 4.

−2−6 2 6 8

−6
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6
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x2/3 + y2/3 = 4

x

y

x
−200−400 200 400
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(0, 625.1)

400
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y

 �299.2239 	 x 	 299.2239.

 y � 693.8597 � 68.7672 cosh 0.0100333x,

20

20

−20
x

100 ft

y
y = 31 − 10(ex/20 + e−x/20)

y � 31 � 10�e x�20 � e�x�20�.

WRITING ABOUT CONCEPTS
49. Rectifiable Curve Define a rectifiable curve.

50. Precalculus and Calculus What precalculus formula
and representative element are used to develop the 
integration formula for arc length?

51. Precalculus and Calculus What precalculus formula
and representative element are used to develop the integration
formula for the area of a surface of revolution?

52. HOW DO YOU SEE IT? The graphs of the
functions and on the interval are shown
in the figure. The graph of each function is
revolved about the axis. Which surface of
revolution has the greater surface area? Explain.

x
a b

f1

f2

y

x-

�a, b]f2f1

9781285774770_0704.qxp  8/23/13  3:07 PM  Page 474

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7.4 Arc Length and Surfaces of Revolution 475

53. Think About It The figure shows the graphs of the 
functions and on the
interval To print an enlarged copy of the graph, go to
MathGraphs.com.

(a) Label the functions.

(b) List the functions in order of increasing arc length.

(c) Verify your answer in part (b) by using the integration
capabilities of a graphing utility to approximate each 
arc length accurate to three decimal places.

54. Verifying a Formula

(a) Given a circular sector with radius and central angle 
(see figure), show that the area of the sector is given by

(b) By joining the straight-line edges of the sector in part (a),
a right circular cone is formed (see figure) and the lateral
surface area of the cone is the same as the area of the
sector. Show that the area is where is the radius
of the base of the cone. (Hint: The arc length of the 
sector equals the circumference of the base of the cone.)

Figure for 54(a) Figure for 54(b)

(c) Use the result of part (b) to verify that the formula for the
lateral surface area of the frustum of a cone with slant height

and radii and (see figure) is 
(Note: This formula was used to develop the integral for
finding the surface area of a surface of revolution.)

55. Lateral Surface Area of a Cone A right circular cone
is generated by revolving the region bounded by 

and about the axis. Find the lateral surface area
of the cone.

56. Lateral Surface Area of a Cone A right circular cone
is generated by revolving the region bounded by 

and about the axis. Verify that the lateral 
surface area of the cone is 

57. Using a Sphere Find the area of the zone of a sphere
formed by revolving the graph of 
about the axis.

58. Using a Sphere Find the area of the zone of a sphere
formed by revolving the graph of 
about the axis. Assume that 

59. Modeling Data The circumference (in inches) of a vase
is measured at three-inch intervals starting at its base. The
measurements are shown in the table, where is the vertical
distance in inches from the base.

(a) Use the data to approximate the volume of the vase by
summing the volumes of approximating disks.

(b) Use the data to approximate the outside surface area
(excluding the base) of the vase by summing the outside
surface areas of approximating frustums of right circular
cones.

(c) Use the regression capabilities of a graphing utility to find
a cubic model for the points where Use
the graphing utility to plot the points and graph the model.

(d) Use the model in part (c) and the integration capabilities of
a graphing utility to approximate the volume and outside
surface area of the vase. Compare the results with your
answers in parts (a) and (b).

60. Modeling Data Property bounded by two perpendicular
roads and a stream is shown in the figure. All distances are
measured in feet.

(a) Use the regression capabilities of a graphing utility to fit a
fourth-degree polynomial to the path of the stream.

(b) Use the model in part (a) to approximate the area of the
property in acres.

(c) Use the integration capabilities of a graphing utility to find
the length of the stream that bounds the property.
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476 Chapter 7 Applications of Integration

61. Volume and Surface Area Let be the region bounded
by the axis, and where Let 
be the solid formed when is revolved about the axis.

(a) Find the volume of 

(b) Write the surface area as an integral.

(c) Show that approaches a finite limit as 

(d) Show that as 

62. Think About It Consider the equation 

(a) Use a graphing utility to graph the equation.

(b) Set up the definite integral for finding the first-quadrant
arc length of the graph in part (a).

(c) Compare the interval of integration in part (b) and the
domain of the integrand. Is it possible to evaluate the
definite integral? Is it possible to use Simpson’s Rule to
evaluate the definite integral? Explain. (You will learn how
to evaluate this type of integral in Section 8.8.)

Approximating Arc Length or Surface Area In
Exercises 63–66, set up the definite integral for finding the 
indicated arc length or surface area. Then use the integration
capabilities of a graphing utility to approximate the arc length
or surface area. (You will learn how to evaluate this type of 
integral in Section 8.8.)

63. Length of Pursuit A fleeing object leaves the origin and
moves up the axis (see figure). At the same time, a pursuer
leaves the point and always moves toward the fleeing
object. The pursuer’s speed is twice that of the fleeing object.
The equation of the path is modeled by

How far has the fleeing object traveled when it is caught?
Show that the pursuer has traveled twice as far.

Figure for 63 Figure for 64

64. Bulb Design An ornamental light bulb is designed by
revolving the graph of

about the axis, where and are measured in feet (see 
figure). Find the surface area of the bulb and use the result to
approximate the amount of glass needed to make the bulb.
(Assume that the glass is 0.015 inch thick.)

65. Astroid Find the area of the surface formed by revolving
the portion in the first quadrant of the graph of

about the -axis.

Figure for 65 Figure for 66

66. Using a Loop Consider the graph of

shown in the figure. Find the area of the surface formed when
the loop of this graph is revolved about the -axis.

67. Suspension Bridge A cable for a suspension bridge has
the shape of a parabola with equation Let represent
the height of the cable from its lowest point to its highest point 
and let represent the total span of the bridge (see figure).
Show that the length of the cable is given by

68. Suspension Bridge The Humber Bridge, located in the
United Kingdom and opened in 1981, has a main span of about
1400 meters. Each of its towers has a height of about 
155 meters. Use these dimensions, the integral in Exercise 67,
and the integration capabilities of a graphing utility to 
approximate the length of a parabolic cable along the main span.

69. Arc Length and Area Let be the curve given by
for where Show that the arc

length of is equal to the area bounded by and the -axis.
Identify another curve on the interval with this 
property.
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R

PUTNAM EXAM CHALLENGE
70. Find the length of the curve from the origin to the

point where the tangent makes an angle of with the 
-axis.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

x
45�

y2 � x3
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7.5 Work 477

7.5 Work

Find the work done by a constant force.
Find the work done by a variable force.

Work Done by a Constant Force
The concept of work is important to scientists and engineers for determining the 
energy needed to perform various jobs. For instance, it is useful to know the amount of
work done when a crane lifts a steel girder, when a spring is compressed, when a 
rocket is propelled into the air, or when a truck pulls a load along a highway.

In general, work is done by a force when it moves an object. If the force applied
to the object is constant, then the definition of work is as follows.

There are four fundamental types of forces—gravitational, electromagnetic, strong
nuclear, and weak nuclear. A force can be thought of as a push or a pull; a force changes
the state of rest or state of motion of a body. For gravitational forces on Earth, it is 
common to use units of measure corresponding to the weight of an object.

Lifting an Object

Determine the work done in lifting a 50-pound object 4 feet.

Solution The magnitude of the required force is the weight of the object, as shown
in Figure 7.46. So, the work done in lifting the object 4 feet is

pounds,

foot-pounds.

In the U.S. measurement system, work is typically expressed in foot-pounds
(ft-lb), inch-pounds, or foot-tons. In the International System of Units (SI), the basic
unit of force is the newton—the force required to produce an acceleration of 1 meter per
second per second on a mass of 1 kilogram. In this system, work is typically expressed
in newton-meters, also called joules. In another system, the centimeter-gram-second
(C-G-S) system, the basic unit of force is the dyne—the force required to produce an
acceleration of 1 centimeter per second per second on a mass of 1 gram. In this system,
work is typically expressed in dyne-centimeters (ergs) or newton-meters (joules).

 � 200

distance � 4 feetForce � 50 � 50�4�
Work � �force��distance� W � FD

F

Definition of Work Done by a Constant Force

If an object is moved a distance in the direction of an applied constant force 
then the work done by the force is defined as W � FD.W

F,D

Exploration

How Much Work? In Example 1, 200 foot-pounds of work was needed to lift
the 50-pound object 4 feet vertically off the ground. After lifting the object, you
carry it a horizontal distance of 4 feet. Would this require an additional 
200 foot-pounds of work? Explain your reasoning.

y

x

4 ft

1

2

3

4
50 lb

50 lb

The work done in lifting a 50-pound
object 4 feet is 200 foot-pounds.
Figure 7.46
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Work Done by a Variable Force
In Example 1, the force involved was constant. When a variable force is applied to an
object, calculus is needed to determine the work done, because the amount of force
changes as the object changes position. For instance, the force required to compress a
spring increases as the spring is compressed.

Consider an object that is moved along a straight line from to by a
continuously varying force Let be a partition that divides the interval into

subintervals determined by

and let For each choose such that

Then at the force is Because is continuous, you can approximate the work
done in moving the object through the th subinterval by the increment

as shown in Figure 7.47. So, the total work 
done as the object moves from to is 
approximated by

This approximation appears to become better 
and better as So, the work 
done is

The remaining examples in this section use some well-known physical laws. The
discoveries of many of these laws occurred during the same period in which calculus
was being developed. In fact, during the seventeenth and eighteenth centuries, there was
little difference between physicists and mathematicians. One such physicist-
mathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing the
work of many other scientists, including Newton, Leibniz, Huygens, Kepler, and
Descartes. Her physics text Institutions was widely used for many years.

 � �b

a
 F�x� dx.

 W � lim
� ��→0

 �
n

i�1
F�ci� �xi

�� � → 0 �n →��.

 � �
n

i�1
F�ci� �xi.

 W � �
n

i�1
�Wi

ba

�Wi � F�ci� �xi

i
FF�ci�.ci ,

xi�1 � ci � xi.

cii,�xi � xi � xi�1.

a � x0 < x1 < x2 < .  .  . < xn � b

n
�a, b	�F�x�.

x � bx � a
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F(x)

Δx

The amount of force changes as an
object changes position 
Figure 7.47

��x�.

Definition of Work Done by a Variable Force

If an object is moved along a straight line by a continuously varying force 
then the work done by the force as the object is moved from

to

is given by

 � �b

a

 F�x� dx.

 W � lim
���→0

  �
n

i�1
 �Wi

x � bx � a

W
F�x�,

EMILIE DE BRETEUIL (1706–1749)
A major work by Breteuil was 
the translation of Newton’s
“Philosophiae Naturalis Principia
Mathematica” into French. Her
translation and commentary
greatly contributed to the 
acceptance of Newtonian science
in Europe.
See LarsonCalculus.com to read
more of this biography.

Bettmann/Corbis
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The three laws of physics listed below were developed by Robert Hooke
(1635–1703), Isaac Newton (1642–1727), and Charles Coulomb (1736–1806).

1. Hooke’s Law: The force required to compress or stretch a spring (within its 
elastic limits) is proportional to the distance that the spring is compressed or
stretched from its original length. That is,

where the constant of proportionality (the spring constant) depends on the 
specific nature of the spring.

2. Newton’s Law of Universal Gravitation: The force of attraction between two
particles of masses and is proportional to the product of the masses and
inversely proportional to the square of the distance between the two particles. That is,

When and are in kilograms and in meters, will be in newtons for a value
of cubic meter per kilogram-second squared, where is the 
gravitational constant.

3. Coulomb’s Law: The force between two charges and in a vacuum is
proportional to the product of the charges and inversely proportional to the square of
the distance between the two charges. That is,

When and are given in electrostatic units and in centimeters, will be in
dynes for a value of 

Compressing a Spring

See LarsonCalculus.com for an interactive version of this type of example.

A force of 750 pounds compresses a spring 3 inches from its natural length of 
15 inches. Find the work done in compressing the spring an additional 3 inches.

Solution By Hooke’s Law, the force required to compress the spring units
(from its natural length) is Because it follows that

So, as shown in Figure 7.48. To find the increment of work, assume that
the force required to compress the spring over a small increment is nearly constant.
So, the increment of work is

Because the spring is compressed from to inches less than its natural
length, the work required is

inch-pounds.

Note that you do not integrate from to because you were asked to
determine the work done in compressing the spring an additional 3 inches (not
including the first 3 inches).

x � 6x � 0

� 125x2

6

3
� 4500 � 1125 � 3375W � �b

a
 F�x� dx � �6

3
 250x dx

x � 6x � 3

�W � �force��distance increment� � �250x� �x.

�x
F�x� � 250x,

250 � k.750 � 3kF�3� � �k��3�

F�3� � 750,F�x� � kx.
xF�x�

k � 1.
Fdq2q1

     F � k 
q1q2

d2 .     

d

q2q1F

GG � 6.67 � 10�11
Fdm2m1

     F � G 
m1m2

d2 .     

d
m2m1

F

k

     F � kd     

d
F
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x
0 15

Natural length: F(0) = 0

3

Compressed 3 inches: F(3) = 750

x
0 15

x

Compressed x inches: F(x) = 250x

x
0 15

Figure 7.48
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Moving a Space Module into Orbit

A space module weighs 15 metric tons on the 
surface of Earth. How much work is done in 
propelling the module to a height of 800 miles 
above Earth, as shown in Figure 7.49? (Use 
4000 miles as the radius of Earth. Do not consider 
the effect of air resistance or the weight of the 
propellant.)

Solution Because the weight of a body varies
inversely as the square of its distance from the 
center of Earth, the force exerted by 
gravity is

where is the constant of proportionality. Because the module weighs 15 metric tons
on the surface of Earth and the radius of Earth is approximately 4000 miles, you have

So, the increment of work is

Finally, because the module is propelled from to miles, the total
work done is

Formula for work

Integrate.

In SI units, using a conversion factor of 1 foot-pound joules, the work done is

joules.

The solutions to Examples 2 and 3 conform to our development of work as the
summation of increments in the form

Another way to formulate the increment of work is

This second interpretation of is useful in problems involving the movement of 
nonrigid substances such as fluids and chains.

�W

     �W � �force increment��distance� � ��F��x�.     

     �W � �force��distance increment� � �F���x�.     

W � 1.578 � 1011

� 1.35582

 � 1.164 � 1011 foot-pounds.

 � 10,000 mile-tons

 � �50,000 � 60,000

 �
�240,000,000

x 

4800

4000

 � �4800

4000
 
240,000,000

x2  dx

 W � �b

a
 F�x� dx

x � 4800x � 4000

�
240,000,000

x2  �x. �W � �force��distance increment�

 240,000,000 � C.15 �
C

�4000�2

C

F�x� �
C
x2

F�x�
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Δx

x
x

4000 4800

4000
mi

Not drawn to scale

800
mi

Figure 7.49

In 2011, China launched an 
8.5-ton space module. The 
module will be used to conduct
tests as China prepares to build 
a space station between 2020 
and 2022.

AFP Creative/Getty Images
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Emptying a Tank of Oil

A spherical tank of radius 8 feet is half full of oil
that weighs 50 pounds per cubic foot. Find the 
work required to pump oil out through a hole in 
the top of the tank.

Solution Consider the oil to be subdivided 
into disks of thickness and radius as shown 
in Figure 7.50. Because the increment of force 
for each disk is given by its weight, you have

For a circle of radius 8 and center at 
you have

and you can write the force increment as

In Figure 7.50, note that a disk feet from the bottom of the tank must be moved a 
distance of feet. So, the increment of work is

Because the tank is half full, ranges from 0 to 8, and the work required to empty the
tank is

To estimate the reasonableness of the result in Example 4, consider that the weight of
the oil in the tank is

Lifting the entire half-tank of oil 8 feet would involve work of

Formula for work done by a constant force

foot-pounds.

Because the oil is actually lifted between 8 and 16 feet, it seems reasonable that the
work done is about 589,782 foot-pounds.

 � 428,932

 � �53,616.5��8�
 W � FD

�1
2��volume��density� �

1
2 �

4
3

	83��50� � 53,616.5 pounds

 � 589,782 foot-pounds.

 � 50	�11,264
3 �

 � 50	128y2 �
32
3

y3 �
y4

4 

8

0

 W � �8

0
 50	�256y � 32y2 � y3� dy

y

 � 50	 �256y � 32y2 � y3� �y.

 � 50	 �16y � y2� �y�16 � y�
 �W � �F�16 � y�

�16 � y�
y

 � 50	 �16y � y2� �y.

 �F � 50�	x2 �y�

 x2 � 16y � y2

 x2 � �y � 8�2 � 82

�0, 8�,

 � 50�	x2 �y� pounds.

 � �50 pounds
cubic foot��volume�

 �F � weight

x,�y
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x

16 − y

18

4
8

−8

x

Δyy

16

y

Figure 7.50
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Lifting a Chain

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much
work is required to raise one end of the chain to a height of 20 feet so that it is fully
extended, as shown in Figure 7.51?

Solution Imagine that the chain is divided into small sections, each of length 
Then the weight of each section is the increment of force

Because a typical section (initially on the ground) is raised to a height of the 
increment of work is

Because ranges from 0 to 20, the total work is

In the next example, you will consider a piston of radius in a cylindrical casing,
as shown in Figure 7.52. As the gas in the cylinder expands, the piston moves, and work
is done. If represents the pressure of the gas (in pounds per square foot) against the
piston head and represents the volume of the gas (in cubic feet), then the work 
increment involved in moving the piston feet is

So, as the volume of the gas expands from to the work done in moving the 
piston is

Assuming the pressure of the gas to be inversely proportional to its volume, you have
and the integral for work becomes

Work Done by an Expanding Gas

A quantity of gas with an initial volume of 1 cubic foot and a pressure of 500 pounds
per square foot expands to a volume of 2 cubic feet. Find the work done by the gas.
(Assume that the pressure is inversely proportional to the volume.)

Solution Because and when you have So, the
work is

foot-pounds. � 346.6

 
� 500 ln�V�


2

1

 � �2

1
 
500
V

 dV

 W � �V1

V0

 
k
V

 dV

k � 500.V � 1,p � 500p � k�V

W � �V1

V0

 
k
V

 dV.

p � k�V

W � �V1

V0

 p dV.

V1,V0

�W � �force��distance increment� � F��x� � p�	r2� �x � p �V.

�x
V

p

r

W � �20

0
 5y dy �

5y2

2 

20

0
�

5�400�
2

� 1000 foot-pounds.

y

�W � �force increment��distance� � �5 �y�y � 5y �y.

y,

�F � �weight� � �5 pounds
foot ��length� � 5 �y.

�y.
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y

Work required to raise one end of the
chain
Figure 7.51

x

r
Gas

Work done by expanding gas
Figure 7.52
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7.5 Work 483

Constant Force In Exercises 1–4, determine the work done
by the constant force.

1. A 1200-pound steel beam is lifted 40 feet.

2. An electric hoist lifts a 2500-pound car 6 feet.

3. A force of 112 newtons is required to slide a cement block 
8 meters in a construction project.

4. The locomotive of a freight train pulls its cars with a constant
force of 9 tons a distance of one-half mile.

Hooke’s Law In Exercises 5–10, use Hooke’s Law to 
determine the variable force in the spring problem.

5. A force of 5 pounds compresses a 15-inch spring a total of 
3 inches. How much work is done in compressing the spring 
7 inches?

6. A force of 250 newtons stretches a spring 30 centimeters. How
much work is done in stretching the spring from 20 centimeters
to 50 centimeters?

7. A force of 20 pounds stretches a spring 9 inches in an exercise
machine. Find the work done in stretching the spring 1 foot
from its natural position.

8. An overhead garage door has two springs, one on each side of
the door. A force of 15 pounds is required to stretch each
spring 1 foot. Because of the pulley system, the springs stretch
only one-half the distance the door travels. The door moves a
total of 8 feet, and the springs are at their natural length when
the door is open. Find the work done by the pair of springs.

9. Eighteen foot-pounds of work is required to stretch a spring 
4 inches from its natural length. Find the work required to
stretch the spring an additional 3 inches.

10. Seven and one-half foot-pounds of work is required to 
compress a spring 2 inches from its natural length. Find the work
required to compress the spring an additional one-half inch.

11. Propulsion Neglecting air resistance and the weight of the
propellant, determine the work done in propelling a five-ton
satellite to a height of (a) 100 miles above Earth and 
(b) 300 miles above Earth.

12. Propulsion Use the information in Exercise 11 to write the
work of the propulsion system as a function of the height 
of the satellite above Earth. Find the limit (if it exists) of as

approaches infinity.

13. Propulsion Neglecting air resistance and the weight of the
propellant, determine the work done in propelling a 10-ton
satellite to a height of (a) 11,000 miles above Earth and 
(b) 22,000 miles above Earth.

14. Propulsion A lunar module weighs 12 tons on the surface
of Earth. How much work is done in propelling the module
from the surface of the moon to a height of 50 miles? Consider
the radius of the moon to be 1100 miles and its force of 
gravity to be one-sixth that of Earth.

15. Pumping Water A rectangular tank with a base 4 feet by 
5 feet and a height of 4 feet is full of water (see figure). The
water weighs 62.4 pounds per cubic foot. How much work is
done in pumping water out over the top edge in order to empty
(a) half of the tank and (b) all of the tank?

16. Think About It Explain why the answer in part (b) of
Exercise 15 is not twice the answer in part (a).

17. Pumping Water A cylindrical water tank 4 meters high
with a radius of 2 meters is buried so that the top of the tank is 
1 meter below ground level (see figure). How much work is
done in pumping a full tank of water up to ground level? (The
water weighs 9800 newtons per cubic meter.)

Figure for 17 Figure for 18

18. Pumping Water Suppose the tank in Exercise 17 is 
located on a tower so that the bottom of the tank is 10 meters
above the level of a stream (see figure). How much work is
done in filling the tank half full of water through a hole in the
bottom, using water from the stream?

19. Pumping Water An open tank has the shape of a right
circular cone (see figure). The tank is 8 feet across the top and
6 feet high. How much work is done in emptying the tank by
pumping the water over the top edge?

x

6 − y

Δy

2

6

−2−4

4

y

Δy

10 m

x

y

y

x
2

5

−2

5 − y

Ground level

Δy

y

5 ft

4 ft

4 ft

h
W

hW

7.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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484 Chapter 7 Applications of Integration

20. Pumping Water Water is pumped in through the bottom
of the tank in Exercise 19. How much work is done to fill the tank

(a) to a depth of 2 feet?

(b) from a depth of 4 feet to a depth of 6 feet?

21. Pumping Water A hemispherical tank of radius 6 feet is
positioned so that its base is circular. How much work is
required to fill the tank with water through a hole in the base
when the water source is at the base?

22. Pumping Diesel Fuel The fuel tank on a truck has
trapezoidal cross sections with the dimensions (in feet) shown
in the figure. Assume that the engine is approximately 3 feet
above the top of the fuel tank and that diesel fuel weighs
approximately 53.1 pounds per cubic foot. Find the work done
by the fuel pump in raising a full tank of fuel to the level of the
engine.

Pumping Gasoline In Exercises 23 and 24, find the work
done in pumping gasoline that weighs 42 pounds per cubic foot.
(Hint: Evaluate one integral by a geometric formula and the
other by observing that the integrand is an odd function.)

23. A cylindrical gasoline tank 3 feet in diameter and 4 feet long 
is carried on the back of a truck and is used to fuel tractors. 
The axis of the tank is horizontal. The opening on the tractor
tank is 5 feet above the top of the tank in the truck. Find the
work done in pumping the entire contents of the fuel tank into
the tractor.

24. The top of a cylindrical gasoline storage tank at a service 
station is 4 feet below ground level. The axis of the tank is 
horizontal and its diameter and length are 5 feet and 12 feet,
respectively. Find the work done in pumping the entire 
contents of the full tank to a height of 3 feet above ground level.

Lifting a Chain In Exercises 25–28, consider a 20-foot chain
that weighs 3 pounds per foot hanging from a winch 20 feet
above ground level. Find the work done by the winch in
winding up the specified amount of chain.

25. Wind up the entire chain.

26. Wind up one-third of the chain.

27. Run the winch until the bottom of the chain is at the 10-foot
level.

28. Wind up the entire chain with a 500-pound load attached to it.

Lifting a Chain In Exercises 29 and 30, consider a 15-foot
hanging chain that weighs 3 pounds per foot. Find the work
done in lifting the chain vertically to the indicated position.

29. Take the bottom of the chain and raise it to the 15-foot level,
leaving the chain doubled and still hanging vertically (see 
figure).

30. Repeat Exercise 29 raising the bottom of the chain to the 
12-foot level.

x

y

y

15 − 2y

15

12

9

6

3

y

4

3

2

1

x3
2

1

3

3 2

1

y

34. HOW DO YOU SEE IT? The graphs show the
force (in pounds) required to move an object 
9 feet along the axis. Order the force functions
from the one that yields the least work to the one
that yields the most work without doing any 
calculations. Explain your reasoning.

(a) (b)

(c) (d)

x
2 4 6 8

4

3

2

1

F4 =    x

F

F3 = 1
27

x2

x

F

2 4 6 8

1

2

3

4

x
2 4 6 8

16

20

12

8

4

F2

F

x
2 4 6 8

8

6

4

2

F1

F

x-
Fi

WRITING ABOUT CONCEPTS
31. Work by a Constant Force State the definition of

work done by a constant force.

32. Work by a Variable Force State the definition of
work done by a variable force.

33. Work Which of the following requires more work?
Explain your reasoning.

(a) A 60-pound box of books is lifted 3 feet.

(b) A 60-pound box of books is held 3 feet in the air for 
2 minutes.
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7.5 Work 485

35. Ordering Forces Verify your answer to Exercise 34 by
calculating the work for each force function.

36. Electric Force Two electrons repel each other with a force
that varies inversely as the square of the distance between
them. One electron is fixed at the point Find the work
done in moving the second electron from to 

Boyle’s Law In Exercises 37 and 38, find the work done by
the gas for the given volume and pressure. Assume that the
pressure is inversely proportional to the volume. (See Example 6.)

37. A quantity of gas with an initial volume of 2 cubic feet and a
pressure of 1000 pounds per square foot expands to a volume
of 3 cubic feet.

38. A quantity of gas with an initial volume of 1 cubic foot and a
pressure of 2500 pounds per square foot expands to a volume
of 3 cubic feet.

Hydraulic Press In Exercises 39–42, use the integration
capabilities of a graphing utility to approximate the work done
by a press in a manufacturing process. A model for the variable
force (in pounds) and the distance (in feet) the press moves
is given.

Force Interval

39.

40.

41.

42.

43. Modeling Data The hydraulic cylinder on a woodsplitter
has a 4-inch bore (diameter) and a stroke of 2 feet. The
hydraulic pump creates a maximum pressure of 2000 pounds
per square inch. Therefore, the maximum force created by the
cylinder is pounds.

(a) Find the work done through one extension of the cylinder,
given that the maximum force is required.

(b) The force exerted in splitting a piece of wood is variable.
Measurements of the force obtained in splitting a piece of
wood are shown in the table. The variable measures the
extension of the cylinder in feet, and is the force in
pounds. Use Simpson’s Rule to approximate the work
done in splitting the piece of wood.

(c) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data. Plot the
data and graph the model.

(d) Use the model in part (c) to approximate the extension of
the cylinder when the force is maximum.

(e) Use the model in part (c) to approximate the work done in
splitting the piece of wood.

F
x

2000�	22� � 8000	

0 � x � 2F�x� � 1000 sinh x

0 � x � 5F�x� � 100x�125 � x3

0 � x � 4F�x� �
ex 2

� 1
100

0 � x � 5F�x� � 1000�1.8 � ln�x � 1�	

xF

�1, 4�.��2, 4�
�2, 4�.

x 0 1
3

2
3 1 4

3
5
3 2

F�x� 0 20,000 22,000 15,000 10,000 5000 0

Tidal power plants use “tidal energy” to produce electrical energy.
To construct a tidal power plant, a dam is built to separate a basin
from the sea. Electrical energy is produced as the water flows back
and forth between the basin and the sea. The amount of “natural
energy” produced depends on the volume of the basin and the tidal
range—the vertical distance between high and low tides. (Several
natural basins have tidal ranges in excess of 15 feet; the Bay of
Fundy in Nova Scotia has a tidal range of 53 feet.)

(a) Consider a basin with a rectangular base, as shown in the 
figure. The basin has a tidal range of 25 feet, with low tide 
corresponding to How much water does the basin hold
at high tide?

(b) The amount of energy produced during the filling (or the 
emptying) of the basin is proportional to the amount of work
required to fill (or empty) the basin. How much work is required
to fill the basin with seawater? (Use a seawater density of 
64 pounds per cubic foot.)

The Bay of Fundy in Nova Scotia has an extreme tidal range,
as displayed in the greatly contrasting photos above.

y � 0.

1,000 ft

y

x

500 ft

25 ft

High tide

Low tide

SEA

BASIN

1
40,000

x2y =

Tidal Energy

FOR FURTHER INFORMATION For more information on
tidal power, see the article “LaRance: Six Years of Operating a Tidal
Power Plant in France” by J. Cotillon in Water Power Magazine.

Andrew J. Martinez/Photo Researchers, Inc
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486 Chapter 7 Applications of Integration

7.6 Moments, Centers of Mass, and Centroids

Understand the definition of mass.
Find the center of mass in a one-dimensional system.
Find the center of mass in a two-dimensional system.
Find the center of mass of a planar lamina.
Use the Theorem of Pappus to find the volume of a solid of revolution.

Mass
In this section, you will study several important applications of integration that are 
related to mass. Mass is a measure of a body’s resistance to changes in motion, and is
independent of the particular gravitational system in which the body is located. However,
because so many applications involving mass occur on Earth’s surface, an object’s mass
is sometimes equated with its weight. This is not technically correct. Weight is a type of
force and as such is dependent on gravity. Force and mass are related by the equation

The table below lists some commonly used measures of mass and force, together with
their conversion factors.

Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.

Solution Use 32 feet per second per second as the acceleration due to gravity.

Because many applications involving mass occur on Earth’s surface, this amount of
mass is called a pound mass.

 � 0.03125 slug

 � 0.03125 
pound

foot per second per second

 �
1 pound

32 feet per second per second

Force � �mass��acceleration� Mass �
force

acceleration

     Force � �mass��acceleration�.     

System of
Measurement

Measure 
of Mass Measure of Force

U.S. Slug Pound � �slug�(ft�sec2�

International Kilogram Newton � �kilogram��m�sec2�

C-G-S Gram Dyne � �gram��cm�sec2�

Conversions:

1 foot � 0.3048 meter1 dyne � 0.00001 newton

1 gram � 0.00006852 slug1 dyne � 0.000002248 pound

1 kilogram � 0.06852 slug1 newton � 0.2248 pound

1 slug � 14.59 kilograms1 pound � 4.448 newtons
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Center of Mass in a One-Dimensional System
You will now consider two types of moments of a mass—the moment about a point
and the moment about a line. To define these two moments, consider an idealized
situation in which a mass is concentrated at a point. If is the distance between this
point mass and another point then the moment of m about the point P is

and is the length of the moment arm.
The concept of moment can be demonstrated simply by a seesaw, as shown in

Figure 7.53. A child of mass 20 kilograms sits 2 meters to the left of fulcrum and an
older child of mass 30 kilograms sits 2 meters to the right of From experience, you
know that the seesaw will begin to rotate clockwise, moving the larger child down. This
rotation occurs because the moment produced by the child on the left is less than the
moment produced by the child on the right.

kilogram-meters

kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger child
moved to a position meters from the fulcrum, then the seesaw would balance, because
each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin
corresponds to the fulcrum, as shown in Figure 7.54. Several point masses are located
on the axis. The measure of the tendency of this system to rotate about the origin is
the moment about the origin, and it is defined as the sum of the products The
moment about the origin is denoted by and can be written as

If is 0, then the system is said to be in equilibrium.

If then the system is in equilibrium.
Figure 7.54

For a system that is not in equilibrium, the center of mass is defined as the point
at which the fulcrum could be relocated to attain equilibrium. If the system were 

translated units, then each coordinate would become

and because the moment of the translated system is 0, you have

Solving for produces

When the system is in equilibrium.m1x1 � m2x2 � .  .  . � mnxn � 0,

x �
�
n

i�1
mixi

�
n

i�1
mi

�
moment of system about origin

total mass of system
.

x

�
n

i�1
 mi�xi � x� � �

n

i�1
 mixi � �

n

i�1
 mix � 0.

�xi � x �

xix
x

m1x1 � m2 x2 � .  .  . � mn xn � 0,

m1
x

x1

m2

x2

mn − 1

xn − 1

mn

xn

m3

x30

M0

M0 � m1x1 � m2x2 � .  .  . � mnxn.

M0

mi xi.n
x-

4
3

Right moment �  �30��2� � 60

 Left moment �  �20��2� � 40

P.
P,

x

     Moment � mx     

P,
xm
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2 m2 m

20 kg 30 kg

P

The seesaw will balance when the left
and the right moments are equal.
Figure 7.53

9781285774770_0706.qxp  9/19/13  4:29 PM  Page 487

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.55.

Figure 7.55

Solution The moment about the origin is

Because the total mass of the system is 

the center of mass is

Note that the point masses will be in equilibrium when the fulcrum is located at 

Rather than define the moment of a mass, you could define the moment of a force.
In this context, the center of mass is called the center of gravity. Consider a system of
point masses that is located at Then, because

the total force of the system is

The torque (moment) about the origin is

and the center of gravity is

So, the center of gravity and the center of mass have the same location.

T0

F
�

M0a
ma

�
M0

m
� x.

� M0a T0 � �m1a�x1 � �m2a�x2 � .  .  . � �mna�xn

� ma. F � m1a � m2a � .  .  . � mna

force � �mass��acceleration�

x1, x2, .  .  . , xn.m1, m2, .  .  . , mn

x � 1.

x �
M0

m
�

40
40

� 1.

m � 10 � 15 � 5 � 10 � 40

 � 40.

 � �50 � 0 � 20 � 70

 � 10��5� � 15�0� � 5�4� � 10�7�
 M0 � m1x1 � m2x2 � m3x3 � m4x4

0 1 2 3 4 5 6 7 8 9−5 −4 −3 −2 −1

x1010 515

m4m3m2m1

488 Chapter 7 Applications of Integration

Moments and Center of Mass: One-Dimensional System

Let the point masses be located at 

1. The moment about the origin is 

2. The center of mass is

where is the total mass of the system.m � m1 � m2 � .  .  . � mn

x �
M0

m

M0 � m1x1 � m2x2 � .  .  . � mnxn.

x1, x2,  .  .  . , xn.m1, m2,  .  .  . , mn

9781285774770_0706.qxp  9/19/13  4:30 PM  Page 488

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Center of Mass in a Two-Dimensional System
You can extend the concept of moment to two dimensions by considering a system of
masses located in the plane at the points as shown in
Figure 7.56. Rather than defining a single moment (with respect to the origin), two
moments are defined—one with respect to the axis and one with respect to the

axis.

The moment of a system of masses in the plane can be taken about any horizontal
or vertical line. In general, the moment about a line is the sum of the product of the
masses and the directed distances from the points to the line.

Horizontal line 

Vertical line 

The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses and
located at

and

as shown in Figure 7.57.

Solution

Mass

Moment about axis

Moment about axis

So,

and

The center of mass is �11
5 , 35�.

y �
Mx

m
�

12
20

�
3
5

.

x �
My

m
�

44
20

�
11
5

x-Mx � 6��2� � 3�0� � 2(3�  � 9�2� � 12

y-My � 6�3�  � 3�0� � 2��5� � 9�4� � 44

m  � 6  � 3  � 2  � 9  � 20

�4, 2���5, 3�,�0, 0�,�3, �2�,

m4 � 9,
m1 � 6, m2 � 3, m3 � 2,

x � aMoment � m1�x1 � a� � m2�x2 � a� � .  .  . � mn�xn � a�
y � bMoment � m1� y1 � b� � m2� y2 � b� � .  .  . � mn� yn � b�

y-
x-

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�,xy-
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Moment and Center of Mass: Two-Dimensional System

Let the point masses be located at 

1. The moment about the -axis is

2. The moment about the -axis is

3. The center of mass (or center of gravity) is

and

where

is the total mass of the system.

m � m1 � m2 � .  .  . � mn

y �
Mx

m
x �

My

m

�x, y�

Mx � m1y1 � m2y2 � .  .  .  mnyn.

x

My � m1x1 � m2x2 � .  .  .  mnxn.

y

�x1, y1�, �x2, y2�, .  .  . , �xn, yn).m1, m2, .  .  . , mn

m2

mn

m1

x

(x2, y2)

(x1, y1)

(xn, yn)

y

In a two-dimensional system, there is 
a moment about the -axis and a
moment about the -axis 
Figure 7.56
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4321
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−1

x
(0, 0)

(−5, 3)
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(3, −2)

y

Figure 7.57
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Center of Mass of a Planar Lamina
So far in this section, you have assumed the total mass of a system to be distributed at
discrete points in a plane or on a line. Now consider a thin, flat plate of material of 
constant density called a planar lamina (see Figure 7.58). Density is a measure of
mass per unit of volume, such as grams per cubic centimeter. For planar laminas,
however, density is considered to be a measure of mass per unit of area. Density is 
denoted by the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina 
of uniform density bounded by the graphs of

and as shown in
Figure 7.59. The mass of this region is

where is the area of the region. To find the 
center of mass of this lamina, partition the 
interval into subintervals of equal width 

Let be the center of the subinterval. 
You can approximate the portion of the lamina 
lying in the subinterval by a rectangle whose 
height is Because the density 
of the rectangle is its mass is

Density Height Width

Now, considering this mass to be located at the center of the rectangle, the directed
distance from the axis to is So, the moment of about
the axis is

Summing the moments and taking the limit as suggest the definitions below.n →�

 � � � f�xi� � g�xi�� �x�f�xi� � g�xi�
2 	.

 � miyi

 Moment � �mass��distance�

x-
miyi � �f�xi� � g�xi���2.�xi, yi�x-

�xi, yi�

� � � f�xi� � g�xi�� �x . mi � �density��area�

�,
h � f�xi� � g�xi�.

ith

ithxi�x.
n�a, b�

A

 � �A

 � � 
b

a

 � f�x� � g�x�� dx

 m � �density��area�

a � x � b,y � f�x�, y � g�x�,
�,

�,
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x
a xi b

(xi, g(xi))

(xi, f(xi))

(xi, yi)yi

f

g

Δx

y

Planar lamina of uniform density 
Figure 7.59

�

Moments and Center of Mass of a Planar Lamina

Let and be continuous functions such that on and 
consider the planar lamina of uniform density bounded by the graphs of

and 

1. The moments about the - and -axes are

2. The center of mass is given by and where

is the mass of the lamina.m � � �b
a � f�x� � g�x�� dx

y �
Mx

m
,x �

My

m
�x, y�

My � � 
b

a

 x� f�x� � g�x�� dx.

Mx � � 
b

a

 � f�x� � g�x�
2 	� f �x� � g�x�� dx

yx

a � x � b.y � g�x�,y � f�x�,
�

�a, b�,f�x� 	 g�x�gf

(x, y)

You can think of the center of mass
of a lamina as its balancing point.

For a circular lamina, the center of
mass is the center of the circle. For a
rectangular lamina, the center of mass
is the center of the rectangle.
Figure 7.58

�x, y�

(x, y)
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The Center of Mass of a Planar Lamina

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina of uniform density bounded by the graph of
and the axis.

Solution Because the center of mass lies on the axis of symmetry, you know that
Moreover, the mass of the lamina is

To find the moment about the axis, place a 
representative rectangle in the region, as shown 
in the figure at the right. The distance from 
the axis to the center of this rectangle is

Because the mass of the representative rectangle
is

you have

and is

So, the center of mass (the balancing point) of the lamina is as shown in
Figure 7.60.

The density in Example 4 is a common factor of both the moments and the mass,
and as such divides out of the quotients representing the coordinates of the center of
mass. So, the center of mass of a lamina of uniform density depends only on the shape
of the lamina and not on its density. For this reason, the point

Center of mass or centroid

is sometimes called the center of mass of a region in the plane, or the centroid of the
region. In other words, to find the centroid of a region in the plane, you simply assume
that the region has a constant density of and compute the corresponding center
of mass.

� � 1

�x, y�

�

�0, 85�,

y �
Mx

m
�

256��15
32��3

�
8
5

.

y

 �
256�

15

 �
�

2 �16x �
8x3

3
�

x5

5 	
2

�2

 �
�

2
 
2

�2
 �16 � 8x2 � x4� dx

 Mx � � 
2

�2
 
4 � x2

2
 �4 � x2� dx

� f�x� �x � � �4 � x2� �x

yi �
f�x�
2

�
4 � x2

2
.

x-

x-

 �
32�

3
.

 � ��4x �
x3

3 	
2

�2  

 m � � 
2

�2
 �4 � x2� dx

x � 0.

x-f �x� � 4 � x2
�
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2

f(x) = 4 − x2
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Center of mass:
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5

1
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The center of mass is the balancing
point.
Figure 7.60
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The Centroid of a Plane Region

Find the centroid of the region bounded by the graphs of and 

Solution The two graphs intersect at the points and as shown in
Figure 7.61. So, the area of the region is

The centroid of the region has the following coordinates.

So, the centroid of the region is 

For simple plane regions, you may be able to find the centroids without resorting
to integration.

The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).

Solution By superimposing a coordinate system on the region, as shown in Figure
7.62(b), you can locate the centroids of the three rectangles at

and

Using these three points, you can find the centroid of the region.

So, the centroid of the region is (2.9, 1). Notice that is not the “average” of 
and �5, 1�.�5

2, 12�,�1
2, 32�,

�2.9, 1�

y �
�3�2��3� � �1�2��3� � �1��4�

10
�

10
10

� 1

x �
�1�2��3� � �5�2��3� � �5��4�

10
�

29
10

� 2.9

A � area of region � 3 � 3 � 4 � 10

�5, 1�.�5
2

, 
1
2,�1

2
, 

3
2,

�x, y� � ��1
2, 12

5 �.

 �
12
5

 �
1
9 �

x5

5
� 3x3 � 2x2 � 12x	

1

�2

 �
1
9

 
1

�2
 �x4 � 9x2 � 4x � 12� dx

 �
2
9 �

1
2 
1

�2
 ��x2 � x � 6���x2 � x � 2� dx

y �
1
A

 
1

�2
 ��4 � x2� � �x � 2�

2 	��4 � x2� � �x � 2�� dx

 � �
1
2

 �
2
9 ��

x4

4
�

x3

3
� x2	

1

�2

 �
2
9


1

�2
 ��x3 � x2 � 2x� dx

 x �
1
A

 
1

�2
 x��4 � x2� � �x � 2�� dx

�x, y�

 A � 
1

�2
 � f�x� � g�x�� dx � 
1

�2
 �2 � x � x2� dx �

9
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.

�1, 3�,��2, 0�
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x
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(−2, 0)

f(x) + g(x)
2

f(x) − g(x)

x

g(x) = x + 2
y

f(x) = 4 − x2

Figure 7.61
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(b) The centroids of the three rectangles

Figure 7.62
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Theorem of Pappus
The final topic in this section is a useful theorem credited to Pappus of Alexandria 
(ca. 300 A.D.), a Greek mathematician whose eight-volume Mathematical Collection is
a record of much of classical Greek mathematics. You are asked to prove this theorem
in Section 14.4.

The Theorem of Pappus can be used to find the volume of a torus, as shown in the
next example. Recall that a torus is a doughnut-shaped solid formed by revolving a 
circular region about a line that lies in the same plane as the circle (but does not 
intersect the circle).

Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.64(a), which was formed by revolving
the circular region bounded by 

about the axis, as shown in Figure 7.64(b).

(a) (b)

Figure 7.64

Solution In Figure 7.67(b), you can see that the centroid of the circular region is 
So, the distance between the centroid and the axis of revolution is

Because the area of the circular region is the volume of the torus is

 � 39.5.

 � 4
2

 � 2
�2��
�
 V � 2
rA

A � 
,

r � 2.

�2, 0�.

x
−3 −2

−1

−1

1

2

2

Centroid

(2, 0)r = 2

(x − 2)2 + y2 = 1

y

Torus

y-

�x � 2�2 � y2 � 1
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THEOREM 7.1 The Theorem of Pappus

Let be a region in a plane and let be a line in the same plane such that 
does not intersect the interior of as shown in Figure 7.63. If is the distance
between the centroid of and the line, then the volume of the solid of 
revolution formed by revolving about the line is

where is the area of (Note that is the distance traveled by the centroid 
as the region is revolved about the line.)

2
rR.A

V � 2
rA

R
VR

rR,
LLR

R

r

Centroid of R

L

The volume is where is the
area of region 
Figure 7.63

R.
A2
 rA,V

Exploration

Use the shell method to show 
that the volume of the torus 
in Example 7 is

Evaluate this integral using 
a graphing utility. Does your
answer agree with the one 
in Example 7?

V �
3

1
 4
x�1 � �x �2�2 dx.
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494 Chapter 7 Applications of Integration

7.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

mi 3 4 2 1 6

�xi, yi� ��2, �3� �5, 5� �7, 1� �0, 0� ��3, 0�

mi 12 6 4.5 15

�xi, yi� �2, 3� ��1, 5� �6, 8� �2, �2�

mi 5 1 3

�xi, yi� �2, 2� ��3, 1� �1, �4�

mi 10 2 5

�xi, yi� �1, �1� �5, 5� ��4, 0�

Center of Mass of a Linear System In Exercises 1–4,
find the center of mass of the point masses lying on the -axis.

1.

2.

3.

4.

5. Graphical Reasoning

(a) Translate each point mass in Exercise 3 to the right four
units and determine the resulting center of mass.

(b) Translate each point mass in Exercise 4 to the left two
units and determine the resulting center of mass.

6. Conjecture Use the result of Exercise 5 to make a 
conjecture about the change in the center of mass that results
when each point mass is translated units horizontally.

Statics Problems In Exercises 7 and 8, consider a beam of
length with a fulcrum feet from one end (see figure). There
are objects with weights and placed on opposite ends of
the beam. Find such that the system is in equilibrium.

7. Two children weighing 48 pounds and 72 pounds are going to
play on a seesaw that is 10 feet long.

8. In order to move a 600-pound rock, a person weighing 
200 pounds wants to balance it on a beam that is 5 feet long.

Center of Mass of a Two-Dimensional System In
Exercises 9–12, find the center of mass of the given system of
point masses.

9.

10.

11.

12.

Center of Mass of a Planar Lamina In Exercises 13–26,
find and for the laminas of uniform density 
bounded by the graphs of the equations.

13. 14.

15. 16.

17. 18.

19.

20.

21. 22.

23. 24.

25. 26.

Approximating a Centroid In Exercises 27–30, use a
graphing utility to graph the region bounded by the graphs of
the equations. Use the integration capabilities of the graphing
utility to approximate the centroid of the region.

27.

28.

29. Prefabricated End Section of a Building

30. Witch of Agnesi

Finding the Center of Mass In Exercises 31–34,
introduce an appropriate coordinate system and find the 
coordinates of the center of mass of the planar lamina. (The
answer depends on the position of the coordinate system.)

31. 32.

33. 34.

6

2

7
8

7
8

2

4 4

1

1

2
1

1

5

3 3

7

2

1
2

2 1

1

2

2 1

y �
8

x2 � 4
, y � 0, x � �2, x � 2

y � 5 3�400 � x2, y � 0

y � xe�x�2, y � 0, x � 0,  x � 4

y � 10x�125 � x3, y � 0

x � y � 2, x � y 2x � �y, x � 2y � y 2

x � 3y � y2, x � 0x � 4 � y 2, x � 0

y � x2�3, y � 4y � x2�3, y � 0, x � 8

y � �x � 1, y �
1
3x � 1

y � �x2 � 4x � 2, y � x � 2

y � �x, y �
1
2 xy � x2, y � x3

y �
1
2x2, y � 0, x � 2y � �x, y � 0, x � 4

y � 6 � x, y � 0, x � 0y �
1
2 x, y � 0, x � 2

��x, y�Mx, My,

x
W2W1

xL

k

x1 � �2, x2 � 6, x3 � 0, x4 � 3, x5 � �5

m1 � 8, m2 � 5, m3 � 5, m4 � 12, m5 � 2

x1 � 6, x2 � 10, x3 � 3, x4 � 2, x5 � 4

m1 � 1, m2 � 3, m3 � 2, m4 � 9, m5 � 5

x1 � �3, x2 � �2, x3 � 5, x4 � 4

m1 � 7, m2 � 4, m3 � 3, m4 � 8

x1 � �5, x2 � 0, x3 � 3

m1 � 7, m2 � 3, m3 � 5

x

x L − x

W1

W2
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7.6 Moments, Centers of Mass, and Centroids 495

35. Finding the Center of Mass Find the center of mass of
the lamina in Exercise 31 when the circular portion of the lamina
has twice the density of the square portion of the lamina.

36. Finding the Center of Mass Find the center of mass of
the lamina in Exercise 31 when the square portion of the lamina
has twice the density of the circular portion of the lamina.

Finding Volume by the Theorem of Pappus In
Exercises 37–40, use the Theorem of Pappus to find the volume
of the solid of revolution.

37. The torus formed by revolving the circle

about the axis

38. The torus formed by revolving the circle

about the axis

39. The solid formed by revolving the region bounded by the
graphs of and about the axis

40. The solid formed by revolving the region bounded by the
graphs of and about the axis

Centroid of a Common Region In Exercises 45–50, find
and/or verify the centroid of the common region used in 
engineering.

45. Triangle Show that the centroid of the triangle with 
vertices and is the point of intersection of
the medians (see figure).

Figure for 45 Figure for 46

46. Parallelogram Show that the centroid of the parallelogram
with vertices and is the point of
intersection of the diagonals (see figure).

47. Trapezoid Find the centroid of the trapezoid with vertices
and Show that it is the intersection

of the line connecting the midpoints of the parallel sides and
the line connecting the extended parallel sides, as shown in the 
figure.

Figure for 47 Figure for 48

48. Semicircle Find the centroid of the region bounded by the
graphs of and (see figure).

49. Semiellipse Find the centroid of the region bounded by

the graphs of and (see figure).

Figure for 49 Figure for 50

50. Parabolic Spandrel Find the centroid of the parabolic
spandrel shown in the figure.

x

(1, 1)

(0, 0)

Parabolic spandrel

y = 2x − x2

y

x
−a a

b

y

y � 0y �
b
a
�a2 � x2

y � 0y � �r2 � x2

x
−r r

r

y

x

(0, a)

(0, 0)

(c, b)

(c, 0)
b

a

y

�c, 0�.�c, b�,�0, a�,�0, 0�,

�a � b, c��b, c�,�a, 0�,�0, 0�,

x

(b, c) (a + b, c)

(a, 0)

y

x

(b, c)

(−a, 0) (a, 0)

y

�b, c���a, 0�, �a, 0�,

y-x � 6y � 2�x � 2, y � 0,

x-x � 0y � x, y � 4,

x-

x2 � �y � 3�2 � 4

y-

�x � 5�2 � y 2 � 16

WRITING ABOUT CONCEPTS
41. Center of Mass Let the point masses 

be located at 
Define the center of mass 

42. Planar Lamina What is a planar lamina? Describe
what is meant by the center of mass of a planar lamina.

43. Theorem of Pappus State the Theorem of Pappus.

�x, y�

�x, y�.
�x2, y2�, .  .  . , �xn, yn�.�x1, y1�,m2, .  .  . , mn

m1,

44. HOW DO YOU SEE IT? The centroid of the
plane region bounded by the graphs of 

and is Is it possible
to find the centroid of each of the regions bounded
by the graphs of the following sets of equations? If
so, identify the centroid and explain your answer.

(a) and 

(b) and 

(c) and 

(d) and x � 4y � f �x�,  y � 0,  x � 2,

x � 3y � �f �x�,  y � 0,  x � 0,

x � 5y � f �x � 2�,  y � 0,  x � 2,

x � 3y � f �x� � 2,  y � 2,  x � 0,

1 2 3 4 5

1

2

3

4

5 y = f(x)

Centroid: (1.2, 1.4)

x

y

�1.2, 1.4�.x � 3x � 0,y � 0,
y � f �x�,
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496 Chapter 7 Applications of Integration

51. Graphical Reasoning Consider the region bounded by
the graphs of and where 

(a) Sketch a graph of the region.

(b) Use the graph in part (a) to determine Explain.

(c) Set up the integral for finding Because of the form of
the integrand, the value of the integral can be obtained
without integrating. What is the form of the integrand?
What is the value of the integral? Compare with the result
in part (b).

(d) Use the graph in part (a) to determine whether or

Explain.

(e) Use integration to verify your answer in part (d).

52. Graphical and Numerical Reasoning Consider the
region bounded by the graphs of and where

and is a positive integer.

(a) Sketch a graph of the region.

(b) Set up the integral for finding Because of the form of
the integrand, the value of the integral can be obtained
without integrating. What is the form of the integrand?
What is the value of the integral and what is the value of 

(c) Use the graph in part (a) to determine whether or

Explain.

(d) Use integration to find as a function of 

(e) Use the result of part (d) to complete the table.

(f ) Find 

(g) Give a geometric explanation of the result in part (f).

53. Modeling Data The manufacturer of glass for a window
in a conversion van needs to approximate its center of mass. A
coordinate system is superimposed on a prototype of the glass
(see figure). The measurements (in centimeters) for the right
half of the symmetric piece of glass are listed in the table.

(a) Use Simpson’s Rule to approximate the center of mass of
the glass.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data.

(c) Use the integration capabilities of a graphing utility and
the model to approximate the center of mass of the glass.
Compare with the result in part (a).

54. Modeling Data The manufacturer of a boat needs to
approximate the center of mass of a section of the hull. A 
coordinate system is superimposed on a prototype (see figure).
The measurements (in feet) for the right half of the symmetric 
prototype are listed in the table.

(a) Use Simpson’s Rule to approximate the center of mass of
the hull section.

(b) Use the regression capabilities of a graphing utility to find
fourth-degree polynomial models for both curves shown in
the figure. Plot the data and graph the models.

(c) Use the integration capabilities of a graphing utility and
the models to approximate the center of mass of the hull
section. Compare with the result in part (a).

Second Theorem of Pappus In Exercises 55 and 56, use
the Second Theorem of Pappus, which is stated as follows. If a
segment of a plane curve is revolved about an axis that does
not intersect the curve (except possibly at its endpoints), the
area of the resulting surface of revolution is equal to the
product of the length of times the distance traveled by the
centroid of 

55. A sphere is formed by revolving the graph of 
about the axis. Use the formula for surface area,
to find the centroid of the semicircle 

56. A torus is formed by revolving the graph of 
about the axis. Find the surface area of the torus.

57. Finding a Centroid Let be constant, and consider
the region bounded by the axis, and Find
the centroid of this region. As what does the region
look like, and where is its centroid?

n →�,
x � 1.x-f �x� � xn,

n 	 1

y-
�x � 1�2 � y 2 � 1

y � �r2 � x2.
S � 4
r2,x-

y � �r2 � x2

C.
dC

S

C

x 0 0.5 1.0 1.5 2

l 1.50 1.45 1.30 0.99 0

d 0.50 0.48 0.43 0.33 0

x
−2.0 −1.0 1.0

1.0

2.0

l

d

y

x
−40 −20 20

20
10

40

40

y
x 0 10 20 30 40

y 30 29 26 20 0

lim
n→�

y.

n.y

y <
b
2

.

y >
b
2

x?

My.

nb  >  0
y � b,y � x2n

y <
b
2

.

y >
b
2

My.

x.

b > 0.y � b,y � x2

n 1 2 3 4

y

PUTNAM EXAM CHALLENGE
58. Let be the region in the cartesian plane consisting of all

points satisfying the simultaneous conditions
and Find the centroid of 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

V.�x, y�y � 4.�x� � y � �x� � 3
�x, y�

V
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7.7 Fluid Pressure and Fluid Force 497

7.7 Fluid Pressure and Fluid Force

Find fluid pressure and fluid force.

Fluid Pressure and Fluid Force
Swimmers know that the deeper an object is submerged in a fluid, the greater the
pressure on the object. Pressure is defined as the force per unit of area over the surface
of a body. For example, because a column of water that is 10 feet in height and 1 inch
square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is 4.3 pounds
per square inch.* At 20 feet, this would increase to 8.6 pounds per square inch, and in
general the pressure is proportional to the depth of the object in the fluid.

Below are some common weight-densities of fluids in pounds per cubic foot.

Ethyl alcohol 49.4

Gasoline 41.0–43.0

Glycerin 78.6

Kerosene 51.2

Mercury 849.0

Seawater 64.0

Water 62.4

When calculating fluid pressure, you can use an important (and rather surprising)
physical law called Pascal’s Principle, named after the French mathematician Blaise
Pascal. Pascal’s Principle states that the pressure exerted by a fluid at a depth is 
transmitted equally in all directions. For example, in Figure 7.65, the pressure at the
indicated depth is the same for all three objects. Because fluid pressure is given in terms
of force per unit area the fluid force on a submerged horizontal surface of
area is

Fluid force (pressure)(area).

The pressure at is the same for all three objects.
Figure 7.65

h

h

� F � PA �

A
�P � F�A�,

h

Definition of Fluid Pressure

The pressure on an object at depth in a liquid is

where is the weight-density of the liquid per unit of volume.w

Pressure � P � wh

h

* The total pressure on an object in 10 feet of water would also include the pressure due
to Earth’s atmosphere. At sea level, atmospheric pressure is approximately 14.7 pounds per
square inch.

BLAISE PASCAL (1623–1662)

Pascal is well known for his work
in many areas of mathematics and
physics, and also for his influence
on Leibniz. Although much of
Pascal’s work in calculus was 
intuitive and lacked the rigor of
modern mathematics, he 
nevertheless anticipated many
important results.
See LarsonCalculus.com to read
more of this biography.

The Granger Collection, New York
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Fluid Force on a Submerged Sheet

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is
submerged in 6 feet of water, as shown in Figure 7.66.

Solution Because the weight-density of water is 62.4 pounds per cubic foot and the
sheet is submerged in 6 feet of water, the fluid pressure is

Because the total area of the sheet is square feet, the fluid force is

This result is independent of the size of the body of water. The fluid force would be
the same in a swimming pool or lake.

In Example 1, the fact that the sheet is rectangular and horizontal means that you
do not need the methods of calculus to solve the problem. Consider a surface that is 
submerged vertically in a fluid. This problem is more difficult because the pressure 
is not constant over the surface.

Consider a vertical plate that is submerged in
a fluid of weight-density (per unit of volume),
as shown in Figure 7.67. To determine the total
force against one side of the region from depth 
to depth you can subdivide the interval 
into subintervals, each of width Next,
consider the representative rectangle of width 

and length where is in the th 
subinterval. The force against this representative
rectangle is

The force against such rectangles is

Note that is considered to be constant and is factored out of the summation.
Therefore, taking the limit as suggests the next definition.��� →  0 �n →  ��

w

�
n

i�1
 �Fi � w�

n

i�1
h �yi�L�yi� �y.

n

 � wh�yi�L�yi� �y.

 �Fi � w�depth��area�

iyiL�yi�,�y

�y.n
�c, d�d,

c

w

 � 4492.8 pounds.

 � 	374.4 
pounds

square foot
�12 square feet�

 F � PA

A � �3��4� � 12

 � 374.4 pounds per square foot.

P � wh P � �62.4��6�

498 Chapter 7 Applications of Integration

Definition of Force Exerted by a Fluid

The force exerted by a fluid of constant weight-density (per unit of 
volume) against a submerged vertical plane region from to is

where is the depth of the fluid at and is the horizontal length of the
region at y.

L�y�yh�y�

 � w�d

c

 h �y�L �y� dy

 F � w lim
���→0

 �
n

i�1
h�yi�L �yi� �y

y � dy � c
wF

3

6

4

The fluid force on a horizontal metal
sheet is equal to the fluid pressure
times the area.
Figure 7.66

x

L(yi)

h(yi)
Δy

d

c

y

Calculus methods must be used to find
the fluid force on a vertical metal plate.
Figure 7.67
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Fluid Force on a Vertical Surface

See LarsonCalculus.com for an interactive version of this type of example.

A vertical gate in a dam has the shape of an
isosceles trapezoid 8 feet across the top and 
6 feet across the bottom, with a height of 
5 feet, as shown in Figure 7.68(a). What is 
the fluid force on the gate when the top of the
gate is 4 feet below the surface of the water?

Solution In setting up a mathematical model
for this problem, you are at liberty to locate the 

and axes in several different ways. A 
convenient approach is to let the -axis bisect 
the gate and place the axis at the surface of 
the water, as shown in Figure 7.68(b). So, the 
depth of the water at in feet is

To find the length of the region at find 
the equation of the line forming the right side 
of the gate. Because this line passes through 
the points and its equation is

In Figure 7.68(b) you can see that the length of the region at is

Finally, by integrating from to you can calculate the fluid force to be

In Example 2, the axis coincided with the surface of the water. This was convenient,
but arbitrary. In choosing a coordinate system to represent a physical situation, you
should consider various possibilities. Often you can simplify the calculations in a problem
by locating the coordinate system to take advantage of special characteristics of the
problem, such as symmetry.

x-

 � 13,936 pounds.

 � �62.4	2
5
 	

�1675
3 


 � �62.4 	2
5
�

y3

3
� 12y2

�4

�9

 � �62.4 	2
5
�

�4

�9
 �y2 � 24y� dy

 � 62.4��4

�9
 ��y�	2

5
�y � 24� dy

 F � w�d

c

 h �y�L�y� dy

y � �4,y � �9

� L�y�.�
2
5

 �y � 24� Length � 2x

y

 x �
y � 24

5
.

 y � 5x � 24

 y � 9 � 5 �x � 3�

 y � ��9� �
�4 � ��9�

4 � 3
 �x � 3�

�4, �4�,�3, �9�

y,L�y�

Depth � h�y� � �y.

y

x-
y

y-x-
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8 ft

6 ft

5 ft

4 ft

(a) Water gate in a dam

x

h(y) = −y

Δy
x

−2−6 2 6

2

−2

−10 (3, −9)

(4, −4)

y

(b) The fluid force against the gate

Figure 7.68
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Fluid Force on a Vertical Surface

A circular observation window on a marine science ship has a radius of 1 foot, and the
center of the window is 8 feet below water level, as shown in Figure 7.69. What is the
fluid force on the window?

Solution To take advantage of symmetry, locate a coordinate system such that the
origin coincides with the center of the window, as shown in Figure 7.69. The depth at

is then

The horizontal length of the window is and you can use the equation for the 
circle, to solve for as shown.

Finally, because ranges from to and using 64 pounds per cubic foot as the
weight-density of seawater, you have

Initially it looks as though this integral would be difficult to solve. However, when you
break the integral into two parts and apply symmetry, the solution is simpler.

The second integral is 0 (because the integrand is odd and the limits of integration are
symmetric with respect to the origin). Moreover, by recognizing that the first integral
represents the area of a semicircle of radius 1, you obtain

So, the fluid force on the window is about 1608.5 pounds.

 � 1608.5 pounds.

 � 512�

 F � 64�16�	�

2
 � 64�2��0�

F � 64�16��1

�1

�1 � y2 dy � 64�2��1

�1
 y�1 � y2 dy

 � 64�1

�1
 �8 � y��2��1 � y2 dy.

 F � w�d

c
 h �y�L�y� dy

1,�1y

 � 2�1 � y2 � L�y�
 Length � 2x

xx2 � y2 � 1,
2x,

Depth � h�y� � 8 � y.

y

500 Chapter 7 Applications of Integration

TECHNOLOGY To confirm the result obtained in Example 3, you might have
considered using Simpson’s Rule to approximate the value of

From the graph of

however, you can see that is not differentiable 
when (see figure at the right). This
means that you cannot apply Theorem 5.20
from Section 5.6 to determine the potential 
error in Simpson’s Rule. Without knowing 
the potential error, the approximation is of 
little value. Use a graphing utility to 
approximate the integral.

x � ±1
f

 f �x� � �8 � x��1 � x2

 128�1

�1
 �8 � x��1 � x2 dx.

1.5

−2

−1.5

10

is not differentiable at x � ±1. f

x

8 − y

Observation
window

2 3

8

7

6

5

4

3

2

Δy

x

y

The fluid force on the window
Figure 7.69
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7.7 Fluid Pressure and Fluid Force 501

Force on a Submerged Sheet In Exercises 1–4, the area
of the top side of a piece of sheet metal is given. The sheet metal
is submerged horizontally in 8 feet of water. Find the fluid force
on the top side.

1. 3 square feet 2. 8 square feet

3. 10 square feet 4. 25 square feet

Buoyant Force In Exercises 5 and 6, find the buoyant force
of a rectangular solid of the given dimensions submerged in
water so that the top side is parallel to the surface of the water.
The buoyant force is the difference between the fluid forces on
the top and bottom sides of the solid.

5. 6.

Fluid Force on a Tank Wall In Exercises 7–12, find the
fluid force on the vertical side of the tank, where the dimensions
are given in feet. Assume that the tank is full of water.

7. Rectangle 8. Triangle

9. Trapezoid 10. Semicircle

11. Parabola, 12. Semiellipse,

Fluid Force of Water In Exercises 13–16, find the fluid
force on the vertical plate submerged in water, where the
dimensions are given in meters and the weight-density of water
is 9800 newtons per cubic meter.

13. Square 14. Square

15. Triangle 16. Rectangle

Force on a Concrete Form In Exercises 17–20, the figure
is the vertical side of a form for poured concrete that weighs
140.7 pounds per cubic foot. Determine the force on this part of
the concrete form.

17. Rectangle 18. Semiellipse,

19. Rectangle 20. Triangle

21. Fluid Force of Gasoline A cylindrical gasoline tank is
placed so that the axis of the cylinder is horizontal. Find the
fluid force on a circular end of the tank when the tank is half
full, where the diameter is 3 feet and the gasoline weighs 
42 pounds per cubic foot.

3 ft

5 ft

6 ft

4 ft

3 ft

4 ft
2 ft

10 ft

y � �
3
4�16 � x2

5

1

1

9

3

6

1

3 3

2

2

3

4

4

4

y � �
1
2�36 � 9x2

y � x2

2
3

2

4

3

4

3

4

4 ft

6 ft
8 ft

h

2 ft

2 ft

3 ft

h

7.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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502 Chapter 7 Applications of Integration

22. Fluid Force of Gasoline Repeat Exercise 21 for a tank
that is full. (Evaluate one integral by a geometric formula and
the other by observing that the integrand is an odd function.)

23. Fluid Force on a Circular Plate A circular plate of
radius feet is submerged vertically in a tank of fluid that
weighs pounds per cubic foot. The center of the circle is 

feet below the surface of the fluid, where Show that
the fluid force on the surface of the plate is

(Evaluate one integral by a geometric formula and the other by
observing that the integrand is an odd function.)

24. Fluid Force on a Circular Plate Use the result of
Exercise 23 to find the fluid force on the circular plate shown
in each figure. Assume the plates are in the wall of a tank filled
with water and the measurements are given in feet.

(a) (b)

25. Fluid Force on a Rectangular Plate A rectangular
plate of height feet and base feet is submerged vertically in
a tank of fluid that weighs pounds per cubic foot. The 
center is feet below the surface of the fluid, where 
Show that the fluid force on the surface of the plate is

26. Fluid Force on a Rectangular Plate Use the result of
Exercise 25 to find the fluid force on the rectangular plate
shown in each figure. Assume the plates are in the wall of a
tank filled with water and the measurements are given in feet.

(a) (b)

27. Submarine Porthole A square porthole on a vertical 
side of a submarine (submerged in seawater) has an area of 
1 square foot. Find the fluid force on the porthole, assuming
that the center of the square is 15 feet below the surface.

28. Submarine Porthole Repeat Exercise 27 for a circular
porthole that has a diameter of 1 foot. The center is 15 feet
below the surface.

29. Modeling Data The vertical stern of a boat with a 
superimposed coordinate system is shown in the figure. The
table shows the widths of the stern (in feet) at indicated 
values of Find the fluid force against the stern.

30. Irrigation Canal Gate The vertical cross section of an
irrigation canal is modeled by where is 
measured in feet and corresponds to the center of the
canal. Use the integration capabilities of a graphing utility to
approximate the fluid force against a vertical gate used to stop
the flow of water when the water is 3 feet deep.

x � 0
xf �x� � 5x2��x2 � 4�,

w

Water level
Stern

2

2

4

4

6

6

−2−4−6

y

y.
w

6

10

5

4

5

3

F � wkhb.

k > h�2.k
w
bh

2

3

5

2

F � wk ��r2�.

k > r.k
w

r
y 0 1

2 1 3
2 2 5

2 3 7
2 4

w 0 3 5 8 9 10 10.25 10.5 10.5

WRITING ABOUT CONCEPTS
31. Think About It Approximate the depth of the water in

the tank in Exercise 7 if the fluid force is one-half as great
as when the tank is full. Explain why the answer is not 

32. Fluid Pressure and Fluid Force

(a) Define fluid pressure.

(b) Define fluid force against a submerged vertical plane
region.

33. Fluid Pressure Explain why fluid pressure on a 
surface is calculated using horizontal representative 
rectangles instead of vertical representative rectangles.

3
2.

34. HOW DO YOU SEE IT? Two identical 
semicircular windows are placed at the same depth
in the vertical wall of an aquarium (see figure).
Which is subjected to the greater fluid force?
Explain.

d d
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Review Exercises 503

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding the Area of a Region In Exercises 1–10, sketch
the region bounded by the graphs of the equations and find the
area of the region.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Finding the Area of a Region In Exercises 11–14, use a
graphing utility to graph the region bounded by the graphs of
the equations, and use the integration capabilities of the 
graphing utility to find the area of the region.

11.

12.

13.

14.

15. Numerical Integration Estimate the surface area of the
pond using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

16. Revenue The models and
give the revenue (in billions of dollars) for a

large corporation. Both models are estimates of the revenues
from 2015 through 2020, with corresponding to 2015.
Which model projects the greater revenue? How much more
total revenue does that model project over the six-year period?

Finding the Volume of a Solid In Exercises 17–22, use
the disk method or the shell method to find the volumes of the
solids generated by revolving the region bounded by the graphs
of the equations about the given line(s).

17.

(a) the axis (b) the axis

(c) the line (d) the line 

18.

(a) the axis (b) the line 

(c) the axis (d) the line 

19.

revolved about the axis

20.

revolved about the axis

21.

revolved about the axis

22.

revolved about the axis

23. Depth of Gasoline in a Tank A gasoline tank is an
oblate spheroid generated by revolving the region bounded by
the graph of 

about the axis, where and are measured in feet. Find the
depth of the gasoline in the tank when it is filled to one-fourth
its capacity.

24. Using Cross Sections Find the volume of the solid
whose base is bounded by the circle and the cross
sections perpendicular to the -axis are equilateral triangles.

Finding Arc Length In Exercises 25 and 26, find the arc
length of the graph of the function over the indicated interval.

25. 26.

27. Length of a Catenary A cable of a suspension bridge
forms a catenary modeled by the equation

where and are measured in feet. Use the integration 
capabilities of a graphing utility to approximate the length of
the cable.

yx

y � 300 cosh� x
2000� � 280,  �2000 � x � 2000

y �
1
6

x3 �
1
2x

,  �1, 3�f �x� �
4
5

x5�4,  �0, 4�

x
x2 � y2 � 9

yxy-

x2

16
�

y2

9
� 1

x-

x � 1x � 0,y � 0,y � e�x,

y-

x � 5x � 2,y � 0,y �
1
x2,

x-

x � 1x � �1,y � 0,y �
1

	1 � x2,

y-

x � 1x � 0,y � 0,y �
1

x4 � 1
,

x � �1y-

y � 2x-

x � 0y � 2,y � 	x,

x � 6x � 3

y-x-

x � 3y � 0,y � x,

t � 15

R2 � 8.4 � 0.35t
R1 � 6.4 � 0.2t � 0.01t2 

20 ft

50 ft
54 ft 82 ft 75 ft

82 ft 73 ft 80 ft

y � x4 � 2x2,  y � 2x2

	x � 	y � 1,  y � 0,  x � 0

y � x2 � 4x � 3,  y � x3,  x � 0

y � x2 � 8x � 3,  y � 3 � 8x � x2

�

3
� y �

7�

3
x �

1
2

,x � cos y,

�

4
� x �

5�

4
y � cos x,y � sin x,

�

6
� x �

5�

6
y � 2,y � csc x,

x � 0y � e2,y � ex,

x � y � 3x � y2 � 1,

y � x3y � x,

y � 0x � �1,x � y2 � 2y,

x � 1x � �1,y � 0,y �
1

x2 � 1
,

x � 5y � 4,y �
1
x2,

x � 2x � �2,y �
3
4
x,y � 6 �

1
2
x2,
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504 Chapter 7 Applications of Integration

28. Approximation Determine which value best approximates
the length of the arc represented by the integral

(Make your selection on the basis of a sketch of the arc and not
by performing any calculations.)

(a) 10 (b) (c) 2 (d) 4 (e) 1

29. Surface Area Use integration to find the lateral surface
area of a right circular cone of height 4 and radius 3.

30. Surface Area The region bounded by the graphs of
and is revolved about the 

axis. Find the surface area of the solid generated.

31. Work A force of 5 pounds is needed to stretch a spring 
1 inch from its natural position. Find the work done in 
stretching the spring from its natural length of 10 inches to a
length of 15 inches.

32. Work A force of 50 pounds is needed to stretch a spring 
1 inch from its natural position. Find the work done in 
stretching the spring from its natural length of 10 inches to
double that length.

33. Work A water well has an 8-inch casing (diameter) and is
190 feet deep. The water is 25 feet from the top of the well.
Determine the amount of work done in pumping the well dry,
assuming that no water enters it while it is being pumped.

34. Boyle’s Law A quantity of gas with an initial volume of 
2 cubic feet and a pressure of 800 pounds per square foot
expands to a volume of 3 cubic feet. Find the work done by the
gas. Assume that the pressure is inversely proportional to the
volume.

35. Work A chain 10 feet long weighs 4 pounds per foot and is
hung from a platform 20 feet above the ground. How much
work is required to raise the entire chain to the 20-foot level?

36. Work A windlass, 200 feet above ground level on the top of
a building, uses a cable weighing 5 pounds per foot. Find the
work done in winding up the cable when

(a) one end is at ground level.

(b) there is a 300-pound load attached to the end of the cable.

37. Work The work done by a variable force in a press is 
80 foot-pounds. The press moves a distance of 4 feet, and the
force is a quadratic of the form Find 

38. Work Find the work done by the force shown in the figure.

39. Center of Mass of a Linear System Find the center
of mass of the point masses lying on the -axis.

40. Center of Mass of a Two-Dimensional System

Find the center of mass of the given system of point masses.

Finding a Centroid In Exercises 41 and 42, find the 
centroid of the region bounded by the graphs of the equations.

41. 42.

43. Centroid A blade on an industrial fan has the configuration
of a semicircle attached to a trapezoid (see figure). Find the
centroid of the blade.

44. Finding Volume Use the Theorem of Pappus to find the
volume of the torus formed by revolving the circle

about the -axis.

45. Fluid Force of Seawater Find the fluid force on the 
vertical plate submerged in seawater (see figure).

Figure for 45 Figure for 46

46. Force on a Concrete Form The figure is the vertical
side of a form for poured concrete that weights 140.7 pounds
per cubic foot. Determine the force on this part of the concrete
form.

47. Fluid Force A swimming pool is 5 feet deep at one end and
10 feet deep at the other, and the bottom is an inclined plane.
The length and width of the pool are 40 feet and 20 feet. If the
pool is full of water, what is the fluid force on each of the 
vertical walls?
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P.S. Problem Solving 505

1. Finding a Limit Let be the area of the region in the first
quadrant bounded by the parabola and the line 

Let be the area of the triangle Calculate the limit

Figure for 1 Figure for 2

2. Center of Mass of a Lamina Let be the lamina of 
uniform density obtained by removing circle of radius

from circle of radius (see figure).

(a) Show that for 

(b) Show that for is equal to 

(c) Find for and for Then use part (b) to compute
for 

(d) What is the center of mass of 

3. Dividing a Region Let be the region bounded by the
parabola and the axis. Find the equation of the
line that divides this region into two regions of equal area.

4. Volume A hole is cut through the center of a sphere of
radius (see figure). The height of the remaining spherical ring
is Find the volume of the ring and show that it is independent
of the radius of the sphere.

5. Surface Area Graph the curve

Use a computer algebra system to find the surface area of the
solid of revolution obtained by revolving the curve about the
-axis.

6. Torus

(a) A torus is formed by revolving the region bounded by the
circle 

about the axis (see figure). Use the disk method to 
calculate the volume of the torus.

(b) Use the disk method to find the volume of the general torus
when the circle has radius and its center is units from the
axis of rotation.

7. Volume A rectangle of length and width is revolved
about the line (see figure). Find the volume of the resulting
solid of revolution.

Figure for 7 Figure for 8

8. Comparing Areas of Regions

(a) The tangent line to the curve at the point 
intersects the curve at another point Let be the area of
the region bounded by the curve and the tangent line. The
tangent line at intersects the curve at another point 
(see figure). Let be the area of the region bounded by the
curve and this second tangent line. How are the areas and

related?

(b) Repeat the construction in part (a) by selecting an arbitrary
point on the curve Show that the two areas and

are always related in the same way.S
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P.S. Problem Solving See CalcChat.com for tutorial help and
worked-out solutions to odd-numbered exercises.
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506 Chapter 7 Applications of Integration

9. Using Arc Length The graph of passes through
the origin. The arc length of the curve from to is
given by 

Identify the function 

10. Using a Function Let be rectifiable on the interval
and let 

(a) Find 

(b) Find and 

(c) Find on when 

(d) Use the function and interval in part (c) to calculate 
and describe what it signifies.

11. Archimedes’ Principle Archimedes’ Principle states
that the upward or buoyant force on an object within a fluid is
equal to the weight of the fluid that the object displaces. For a
partially submerged object, you can obtain information about
the relative densities of the floating object and the fluid by
observing how much of the object is above and below the 
surface. You can also determine the size of a floating object if
you know the amount that is above the surface and the relative
densities. You can see the top of a floating iceberg (see figure).
The density of ocean water is kilograms per cubic
meter, and that of ice is kilograms per cubic meter.
What percent of the total iceberg is below the surface?

12. Finding a Centroid Sketch the region bounded on the left
by bounded above by and bounded below by

(a) Find the centroid of the region for 

(b) Find the centroid of the region for 

(c) Where is the centroid as 

13. Finding a Centroid Sketch the region to the right of the
axis, bounded above by and bounded below by

(a) Find the centroid of the region  for 

(b) Find the centroid of the region for 

(c) Where is the centroid as 

14. Work Find the work done by each force 

(a) (b)

Consumer and Producer Surplus In Exercises 15 and
16, find the consumer surplus and producer surplus for the
given demand and supply curves. The consumer
surplus and producer surplus are represented by the areas
shown in the figure.

15.

16.

17. Fluid Force A swimming pool is 20 feet wide, 40 feet
long, 4 feet deep at one end, and 8 feet deep at the other end
(see figures). The bottom is an inclined plane. Find the fluid
force on each vertical wall.
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