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Hyperbolic functions arose from looking at the area under a hyperbolic curve.  They are commonly used when dealing with curves that are catenary, curves created by hanging a rope/cable which is supported only at its two ends. Some examples of catenary curves are a jump rope, the support cables on the golden gate bridge, & the St. Louis Arch.
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Or"di
*
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\, n. (Geom.)
   The distance of any point in a curve or a straight line,
   
measured
 on a line called the axis of ordinates or on a line
   
parallel
 to it, from another line called the axis of
   
abscissas
, on which the corresponding abscissa of the point
   
is
 measured.
   Note: The ordinate and abscissa, taken together, are called
         
co[
"o]
rdinates
, and define the position of the point
         
with
 reference to the two axes named, the intersection
         
of
 which is called the origin of co["o]
rdinates
. See
         Coordinate.
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We now define the Hyperbolic Functions below.
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And their graphs are given below.  Notice that the graph of Sinh(x) can be obtained by addition of ordinates using the exponential functions  and .  Like wise for Cosh(x) for  and .
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Many of the identities of the hyperbolic trig. Functions have a corresponding identity. 
Ex: 
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Ex: 5.9.13  Use the value of the given hyperbolic function to find the values of the other hyperbolic functions at x. If .








Taking derivatives of the hyperbolic functions.  This is as easy & difficult as taking the derivative of .

Ex:  Find                                			Ex:  Find 








[image: ]The basic derivatives of the hyperbolic functions are given below.














Ex: 5.9.18 Find the derivative of 



Ex: If , find . (Simplify your answer)





Similar to 5.9.33     T / F   The function  satisfies the differential equation 




[image: ]Some Inverse Hyperbolic Functions and their derivatives and integrals:
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Dafinitions of the Hyperbolic Functions
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Hyperbolic Identities
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THEOREM 5.22 Derivatives and Integrals of Hyperbolic Punctions

Let u be a differentiable function of x.
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THEOREM 5.24 Differentiation and Integration Involving
Inverse Hyperbolic Functions

Let u be a differentiable function of x.
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