Answers to Odd-Numbered Exercises

Chapter 1

Section 1.1 (page 8)

5.

9.

11.

13.

15.

(a)
$$y \approx 1.73$$

(b)
$$x = -4$$

17.
$$(0, -5), (\frac{5}{2}, 0)$$
 19. $(0, -2), (-2, 0), (1, 0)$

33. No symmetry

37. Symmetric with respect to the *y*-axis

43.

Symmetry: none

Symmetry: none

47.

49.

Symmetry: origin

53.

Symmetry: y-axis

Symmetry: x-axis

59.
$$(-1, 5), (2, 2)$$

61.
$$(-1, -2), (2, 1)$$

63.
$$(-1, -5), (0, -1), (2, 1)$$

65.
$$(-2, 2), (-3, \sqrt{3})$$

Symmetry: x-axis

67. (a)
$$y = 0.005t^2 + 0.27t + 2.7$$

(b)

The model is a good fit for the data.

- (c) \$21.5 trillion
- **69.** 4480 units
- **71.** (a) k = 4 (b) $k = -\frac{1}{8}$
 - (c) All real numbers k (d) k = 1
- 73. Answers will vary. Sample answer: y = (x + 4)(x 3)(x 8)
- **75.** (a) and (b) Proofs
- 77. False. (4, -5) is not a point on the graph of $x = y^2 29$.

Section 1.2 (page 16)

1. m = 25.

m = 3

m is undefined.

11.

- **13.** Answers will vary. Sample answers: (0, 2), (1, 2), (5, 2)
- **15.** Answers will vary. Sample answers: (0, 10), (2, 4), (3, 1)
- **17.** 3x 4y + 12 = 0

19.
$$2x - 3y = 0$$

21.
$$3x - y - 11 = 0$$

21.
$$3x - y - 11 = 0$$

25.
$$m = 4, (0, -3)$$
 27. $m = -\frac{1}{5}, (0, 4)$

29. *m* is undefined, no y-intercept

31.

35.

37.

39. 2x - y = 0

41. 8x + 3y - 40 = 0

43. x - 6 = 0

45. 22x - 4y + 3 = 0

47.
$$x - 3 = 0$$
 49. $3x + 2y - 6 = 0$ **51.** $x + y - 3 = 0$

53.
$$x + 2y - 5 = 0$$
 55. (a) $x + 7 = 0$ (b) $y + 2 = 0$

57. (a)
$$x - y + 3 = 0$$
 (b) $x + y - 7 = 0$

59. (a)
$$2x - y - 3 = 0$$
 (b) $x + 2y - 4 = 0$

61. (a)
$$40x - 24y - 9 = 0$$
 (b) $24x + 40y - 53 = 0$

63.
$$V = 250t + 1350$$
 65. $V = -1600t + 20,400$

67. Not collinear, because $m_1 \neq m_2$

69.
$$\left(0, \frac{-a^2+b^2+c^2}{2c}\right)$$
 71. $\left(b, \frac{a^2-b^2}{c}\right)$

- **73.** (a) The line is parallel to the x-axis when a = 0 and $b \neq 0$.
 - (b) The line is parallel to the y-axis when b = 0 and $a \neq 0$.
 - (c) Answers will vary. Sample answer: a = -5 and b = 8
 - (d) Answers will vary. Sample answer: a = 5 and b = 2
 - (e) $a = \frac{5}{2}$ and b = 3

75.
$$5F - 9C - 160 = 0$$
; $72^{\circ}F \approx 22.2^{\circ}C$

77. (a) Current job: W = 2000 + 0.07sJob offer: W = 2300 + 0.05s

You will make more money at the job offer until you sell \$15,000. When your sales exceed \$15,000, your current job will pay you more.

(c) No, because you will make more money at your current job.

79. (a)
$$x = (1530 - p)/15$$

(c) 49 units

45 units

81.
$$12y + 5x - 169 = 0$$
 83

81.
$$12y + 5x - 169 = 0$$
 83. $(5\sqrt{2})/2$ **85.** $2\sqrt{2}$ **87–91.** Proofs **93.** True **95.** True

Section 1.3 (page 27)

- **1.** (a) -4 (b) -25 (c) 7b 4 (d) 7x 11
- **3.** (a) 5 (b) 0 (c) 1 (d) $4 + 2t t^2$
- **5.** (a) 1 (b) 0 (c) $-\frac{1}{2}$ (d) 1
- 7. $3x^2 + 3x \Delta x + (\Delta x)^2$, $\Delta x \neq 0$
- **9.** $(\sqrt{x-1}-x+1)/[(x-2)(x-1)]$
- **11.** Domain: $(-\infty, \infty)$; Range: $[0, \infty)$
- 13. Domain: $(-\infty, \infty)$; Range: $(-\infty, \infty)$
- **15.** Domain: $[0, \infty)$; Range: $[0, \infty)$
- **17.** Domain: [-4, 4]; Range: [0, 4]

- **19.** Domain: All real numbers t such that $t \neq 4n + 2$, where n is an integer; Range: $(-\infty, -1] \cup [1, \infty)$
- **21.** Domain: $(-\infty, 0) \cup (0, \infty)$; Range: $(-\infty, 0) \cup (0, \infty)$
- **23.** Domain: [0, 1]
- **25.** Domain: All real numbers x such that $x \neq 2n\pi$, where n is an integer
- **27.** Domain: $(-\infty, -3) \cup (-3, \infty)$
- **29.** (a) -1 (b) 2 (c) 6 (d) $2t^2 + 4$
 - Domain: $(-\infty, \infty)$; Range: $(-\infty, 1) \cup [2, \infty)$
- **31.** (a) 4 (b) 0 (c) -2 (d) $-b^2$ Domain: $(-\infty, \infty)$; Range: $(-\infty, 0] \cup [1, \infty)$
- 33.

- Domain: $(-\infty, \infty)$
- Range: $(-\infty, \infty)$
- Domain: $[6, \infty)$
- Range: $[0, \infty)$

39.

- Domain: [-3, 3]
- Range: [0, 3]
- Domain: $(-\infty, \infty)$
- Range: $\begin{bmatrix} -3, 3 \end{bmatrix}$
- **41.** The student travels $\frac{1}{2}$ mile/minute during the first 4 minutes, is stationary for the next 2 minutes, and travels 1 mile/minute during the final 4 minutes.
- **43.** y is not a function of x.
- **45.** y is a function of x.
- **47.** y is not a function of x.
- **49.** y is not a function of x.
- **51.** Horizontal shift to the right two units; $y = \sqrt{x-2}$
- 53. Horizontal shift to the right two units and vertical shift down one unit; $y = (x - 2)^2 - 1$

58. *a*

- **55.** *d* **56.** *b*
- **57.** *c*
- **59.** *e* **60.** *g*
- **61.** (a)
- (b)

(c)

(f)

(g)

(e)

- (h)
- **63.** (a) 3x (b) 3x 8 (c) 12x 16
- **65.** (a) 0 (b) 0 (c) -1 (d) $\sqrt{15}$ (e) $\sqrt{x^2 - 1}$ (f) x - 1 ($x \ge 0$)
- **67.** $(f \circ g)(x) = x$; Domain: $[0, \infty)$ $(g \circ f)(x) = |x|$; Domain: $(-\infty, \infty)$
 - No, their domains are different.
- **69.** $(f \circ g)(x) = 3/(x^2 1);$
 - Domain: $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
 - $(g \circ f)(x) = (9/x^2) 1$; Domain: $(-\infty, 0) \cup (0, \infty)$
 - No
- **71.** (a) 4 (b) -2
 - (c) Undefined. The graph of g does not exist at x = -5.
 - (d) 3 (e) 2
 - (f) Undefined. The graph of f does not exist at x = -4.
- 73. Answers will vary.
 - Sample answer: $f(x) = \sqrt{x}$; g(x) = x 2; h(x) = 2x
- **75.** (a) $(\frac{3}{2}, 4)$ (b) $(\frac{3}{2}, -4)$
- 77. f is even. g is neither even nor odd. h is odd.
- **79.** Even; zeros: x = -2, 0, 2
- **81.** Odd; zeros: $x = 0, \frac{\pi}{2} + n\pi$, where n is an integer
- **83.** $f(x) = -5x 6, -2 \le x \le 0$ **85.** $y = -\sqrt{-x}$
- 87. Answers will vary.
- 89. Answers will vary.
- Sample answer:
- Sample answer:

Price (in dollars)

- **91.** c = 25
- **93.** (a) $T(4) = 16^{\circ}\text{C}, T(15) \approx 23^{\circ}\text{C}$
 - (b) The changes in temperature occur 1 hour later.
 - (c) The temperatures are 1° lower.

- (b) $A(25) \approx 443 \text{ acres/farm}$
- **97.** $f(x) = |x| + |x 2| = \begin{cases} 2, \\ -2, \end{cases}$
- **99–101.** Proofs
- **103.** $L = \sqrt{x^2 + \left(\frac{2x}{x-3}\right)^2}$
- **105.** False. For example, if $f(x) = x^2$, then f(-1) = f(1).
- **107.** True
- **109.** False. f(x) = 0 is symmetric with respect to the x-axis.
- 111. Putnam Problem A1, 1988

Section 1.4 (page 34)

- **1.** (a) and (b)
- (c) \$790

Approximately linear

- **3.** (a) d = 0.066F
 - (b)

The model fits well.

- (c) 3.63 cm
- **5.** (a) $y = 0.122x + 2.07, r \approx 0.87$

- (c) Greater per capita energy consumption by a country tends to correspond to greater per capita gross national product of the country. The three countries that differ most from the linear model are Canada, Italy, and Japan.
- (d) $y = 0.142x 1.66, r \approx 0.97$
- 7. (a) $S = 180.89x^2 205.79x + 272$

- (c) When x = 2, $S \approx 583.98$ pounds.
- (d) About 4 times greater
- (e) About 4.37 times greater; No; Answers will vary.
- **9.** (a) $y = -1.806x^3 + 14.58x^2 + 16.4x + 10$
- (c) 214 hp

11. (a) $y_1 = -0.0172t^3 + 0.305t^2 - 0.87t + 7.3$ $y_2 = -0.038t^2 + 0.45t + 3.5$ $y_3 = 0.0063t^3 - 0.072t^2 + 0.02t + 1.8$

About 15.31 cents/mi

- **13.** (a) Yes. At time t, there is one and only one displacement y.
 - (b) Amplitude: 0.35; Period: 0.5
 - (c) $y = 0.35 \sin(4\pi t) + 2$
 - (d) (0.125, 2.35) (0.375, 1.65)

The model appears to fit the data well.

15. Answers will vary. **17.** Putnam Problem A2, 2004

Section 1.5 (page 44)

1. (a) f(g(x)) = 5[(x-1)/5] + 1 = x; g(f(x)) = [(5x + 1) - 1]/5 = x

3. (a) $f(g(x)) = (\sqrt[3]{x})^3 = x$; $g(f(x)) = \sqrt[3]{x^3} = x$

5. (a) $f(g(x)) = \sqrt{x^2 + 4 - 4} = x$; $g(f(x)) = (\sqrt{x-4})^2 + 4 = x$

7. (a) $f(g(x)) = \frac{1}{1/x} = x$; $g(f(x)) = \frac{1}{1/x} = x$

- **9.** c **10.** b **11.** a **12.** d
- 13. One-to-one, inverse exists. 15. Not one-to-one, inverse does not exist.

One-to-one, inverse exists.

Not one-to-one, inverse does not exist.

One-to-one, inverse exists.

- 23. Not one-to-one, inverse does not exist.
- 25. One-to-one, inverse exists.
- **27.** (a) $f^{-1}(x) = (x + 3)/2$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $(-\infty, \infty)$ Range of f and f^{-1} : $(-\infty, \infty)$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $(-\infty, \infty)$ Range of f and f^{-1} : $(-\infty, \infty)$

31. (a) $f^{-1}(x) = x^2$, $x \ge 0$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $[0,\infty)$ Range of f and f^{-1} : $[0, \infty)$
- **33.** (a) $f^{-1}(x) = \sqrt{4 x^2}$, $0 \le x \le 2$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : [0, 2]Range of f and f^{-1} : [0, 2]
- **35.** (a) $f^{-1}(x) = x^3 + 1$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $(-\infty, \infty)$ Range of f and f^{-1} : $(-\infty, \infty)$
- **37.** (a) $f^{-1}(x) = x^{3/2}, x \ge 0$ (b)
- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $[0, \infty)$ Range of f and f^{-1} : $[0,\infty)$
- **39.** (a) $f^{-1}(x) = \sqrt{7}x/\sqrt{1-x^2}$, -1 < x < 1(b)
 - (c) f and f^{-1} are symmetric about y = x.
 - (d) Domain of $f: (-\infty, \infty)$ Range of f: (-1, 1)Domain of f^{-1} : (-1, 1)Range of f^{-1} : $(-\infty, \infty)$

- 43. (a) Answers will vary.
 - (b) $y = \frac{20}{7}(80 x)$

y: number of pounds of the less expensive commodity

- (c) [62.5, 80]; The total cost will be between \$62.50 and \$80.00
- (d) 20 lb

- **45.** One-to-one; $f^{-1}(x) = x^2 + 2$, $x \ge 0$
- 47. Not one-to-one
- **49.** One-to-one; $f^{-1}(x) = \frac{x-b}{a}, \ a \neq 0$
- **51.** The function f passes the Horizontal Line Test on $[4, \infty)$, so it is one-to-one on $[4, \infty)$.
- **53.** The function f passes the Horizontal Line Test on $(0, \infty)$, so it is one-to-one on $(0, \infty)$.
- **55.** The function f passes the Horizontal Line Test on $[0, \pi]$, so it is one-to-one on $[0, \pi]$.
- **57.** Answers will vary. Sample answer: $f^{-1}(x) = \sqrt{x} + 3$, $x \ge 0$
- **59.** (a)

61. (a)

- (b) Answers will vary. Sample answer: $[-5, \infty)$
- (c) $f^{-1}(x) = \sqrt{x} 5$
- (d) Domain of f^{-1} : $[0, \infty)$
- (b) Answers will vary. Sample answer: $[4, \infty)$
- (c) $f^{-1}(x) = 2 + \sqrt{x^2 + 4}$
- (d) Domain of f^{-1} : $[0, \infty)$

63. (a)

- (b) Answers will vary. Sample answer: $[0, \pi]$
- (c) $f^{-1}(x) = \arccos\left(\frac{x}{2}\right)$
- (d) Domain of f^{-1} : $\begin{bmatrix} -3, 3 \end{bmatrix}$
- **65.** 1
- 67. $\frac{\pi}{6}$ 69. 2 71. 32
- **75.** $(g^{-1} \circ f^{-1})(x) = \frac{x+1}{2}$ **77.** $(f \circ g)^{-1}(x) = \frac{x+1}{2}$

-0.4

-0.2

- **79.** (a) f is one-to-one because it passes the Horizontal Line Test.
 - (b) [-2, 2]
 - (c) -4
- 81.

83. (a)

у	-1	.57	-	-0.93	-0.64	-0.	41	_	0.20
х	0	0.2		0.4	0.6	0.8	1		
.,	0	0.20	1	0.41	0.64	0.03	1 4	57	

(b)

(c)

- (d) Intercept: (0, 0); Symmetry: origin
- **85.** $(-\sqrt{2}/2, 3\pi/4), (1/2, \pi/3), (\sqrt{3}/2, \pi/6)$
- **89.** $\pi/3$ **91.** $\pi/6$ **93.** $-\pi/4$ **95.** 2.50
- **99.** -0.1 **101.** x **103.** $\frac{\sqrt{1-x^2}}{x}$ **105.** $\frac{1}{x}$

97. 0.66

- **107.** (a) $\frac{3}{5}$ (b) $\frac{5}{3}$ **109.** (a) $-\sqrt{3}$ (b) $-\frac{13}{5}$
- 111. $\sqrt{1-4x^2}$ 113. $\frac{\sqrt{x^2-1}}{|x|}$ 115. $\frac{\sqrt{x^2-9}}{3}$
- **117.** $x = \frac{1}{3} \left[\sin(\frac{1}{2}) + \pi \right] \approx 1.207$ **119.** $x = \frac{1}{3}$
- **121.** (0.7862, 0.6662)
- **123.** Let y = f(x) be one-to-one. Solve for x as a function of y. Interchange x and y to get $y = f^{-1}(x)$. Let the domain of f^{-1} be the range of f. Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. Sample answer:

$$f(x) = x^{3}$$

$$y = x^{3}$$

$$x = \sqrt[3]{y}$$

$$y = \sqrt[3]{x}$$

$$f^{-1}(x) = \sqrt[3]{x}$$

- 125. The trigonometric functions are not one-to-one. So, their domains must be restricted to define the inverse trigonometric functions.
- **127.** $\arcsin(\frac{\sqrt{x^2 + 81}})$ 129. Answers will vary.
 - 133.

- **135.** $f^{-1}(8) = -3$ 137-139. Proofs
- **141.** False. Let $f(x) = x^2$.
- **143.** False. $\arcsin^2 0 + \arccos^2 0 = \left(\frac{\pi}{2}\right)^2 \neq 1$
- **145.** True **147.** Answers will vary. **151.** $f^{-1}(x) = \frac{-b - \sqrt{b^2 - 4ac + 4ax}}{2a}$
- **149.** Proof
- **153.** $ad bc \neq 0$; $f^{-1}(x) = \frac{b dx}{cx a}$

Section 1.6 (page 53)

- **1.** (a) 125 (b) 9 (c) $\frac{1}{9}$ (d) $\frac{1}{3}$ **3.** (a) 5⁵ (b) $\frac{1}{5}$ (c) $\frac{1}{5}$ (d) 2²

5. (a)
$$e^6$$
 (b) e^{12} (c) $\frac{1}{e^6}$ (d) e^2

7.
$$x = 4$$
 9. $x = 4$ 11. $x = -5$

11.
$$x = -5$$
 13. $x = -2$

15.
$$x = 2$$
 17. $x = 16$ **19.** $x = \ln 5 \approx 1.609$ **21.** $x = -\frac{5}{2}$ **23.** 2.7182805 < e

29.

31.

33.

35.

37.

39. Domain: $(-\infty, \infty)$

41. Domain: $(-\infty, 0]$

43. Domain: $(-\infty, \infty)$

(b)

Translation two units to the right

Reflection in the *x*-axis and vertical shrink

Reflection in the y-axis and translation three units upward

50. b **51.**
$$y = 2(3^x)$$
 53. b

54. d **55.** a **56.** c **57.**
$$\ln 1 = 0$$

57.
$$\ln 1 = 0$$
 59. $e^{0.6931...} = 2$

63.

Domain: x > 0

Domain: x > 0

Domain: x > 3

Domain:
$$x > -2$$

71. $g(x) = \ln(x - 5) - 1$

69. $g(x) = -e^x - 8$

75.

77. (a) $f^{-1}(x) = \frac{\ln x + 1}{x}$

(c) Answers will vary.

79. (a)
$$f^{-1}(x) = e^{x/2} + 1$$

(b)

(c) Answers will vary.

81.
$$x^2$$
 83. $5x + 2$ **85.** $-1 + 2x$

87. (a) 1.7917 (b)
$$-0.4055$$
 (c) 4.3944

(b)
$$-0.4055$$

89.
$$\ln x - \ln 4$$

89.
$$\ln x - \ln 4$$
 91. $\ln x + \ln y - \ln z$

93.
$$\ln x + \frac{1}{2} \ln(x^2 + 5)$$
 95. $\frac{1}{2} [\ln(x - 1) - \ln x]$

97.
$$2 + \ln 3$$
 99. $\ln(7x)$

101.
$$\ln \frac{x-2}{x+2}$$

103.
$$\ln \sqrt[3]{\frac{x(x+3)^2}{x^2-1}}$$
 105. $\ln \frac{9}{\sqrt{x^2+1}}$

105.
$$\ln \frac{9}{\sqrt{x^2+1}}$$

107. (a)
$$x = 4$$
 (b) $x = \frac{3}{2}$

109. (a)
$$x = e^2 \approx 7.389$$
 (b) $x = \ln 4 \approx 1.386$

111.
$$x > \ln 5$$
 113. $e^{-2} < x < 1$

115.

- **117.** Answers will vary. **119.** Answers will vary.
- **121.** (a) False (b) True. $y = \log_2 x$ (c) True. $2^y = x$ (d) False
- **123.** $\beta = 10 \log_{10} I + 160$
- **125.** False. $\ln x + \ln 25 = \ln 25x$
- 127. 45 g f f
- (-0.7899, 0.2429), (1.6242, 18.3615), and (6, 46,656);
- As x increases, $f(x) = 6^x$ grows more rapidly.
- 129. (a) 6
- Domain: $(-\infty, \infty)$
- (b) Proof
- (c) $f^{-1}(x) = \frac{e^{2x} 1}{2e^x}$
- **131.** 12! = 479,001,600
 - Stirling's Formula: $12! \approx 475,687,487$
- **133.** Proof

Review Exercises for Chapter 1 (page 56)

- 1. $(\frac{8}{5}, 0), (0, -8)$
- 3. $(3,0), (0,\frac{3}{4})$
- 5. Not symmetric
- 7. Symmetric with respect to the x-axis, the y-axis, and the origin
- 9. y 6 4 (0, 3) 2 (6, 0) 1 -2 2 4 6

- Symmetry: none
- Symmetry: origin
- 13. y
 5 (0, 4)
 3 2
 1 +
- **15.** (-2, 3) **17.** (-2, 3), (3, 8)
- Symmetry: none

21. 7x - 4y - 41 = 0

23. 2x + 3y + 6 = 0

27.

y

4

3

-2

1

-4

-3

-2

-3

-3

-3

- **31.** (a) 7x 16y + 101 = 0 (b) 5x 3y + 30 = 0 (c) 4x 3y + 27 = 0 (d) x + 3 = 0
- **33.** V = 12,500 850t; \$9950
- **35.** (a) 4 (b) 29 (c) -11 (d) 5t + 9
- **37.** $8x + 4 \Delta x, \Delta x \neq 0$
- **39.** Domain: $(-\infty, \infty)$; Range: $[3, \infty)$
- **41.** Domain: $(-\infty, \infty)$; Range: $(-\infty, 0]$
- 43. y
 44
 3-2-1-2-4-8 10 12 14 x

Function

- Not a function
- **47.** $f(x) = x^3 3x^2$

- (a) $g(x) = -x^3 + 3x^2 + 1$
- (b) $g(x) = (x-2)^3 3(x-2)^2 + 1$
- **49.** (a)

- **51.** For company (a), the profit rose rapidly for the first year and then leveled off. For company (b), the profit dropped and then rose again later.
- **53.** (a) y = -1.204x + 64.2667

70

- (c) The data point (27, 44) is probably an error. Without this point, the new model is y = -1.4344x + 66.4387.
- **55.** (a) $y = 0.61t^2 + 11.0t + 172$

(b) 1200 4

The model fits the data well.

57. (a) $f^{-1}(x) = 2x + 6$

(b) 7

- (c) Answers will vary.
- **59.** (a) $f^{-1}(x) = x^2 1$, $x \ge 0$

-3 4 f⁻¹ f

- (c) Answers will vary.
- **61.** (a) $f^{-1}(x) = x^3 1$

(b) 4 f⁻¹

65. $\frac{1}{2}$

69. c

- (c) Answers will vary.
- 63.

73. $\frac{1}{5} [\ln(2x+1) + \ln(2x-1) - \ln(4x^2+1)]$

75. $\ln\left(\frac{3\sqrt[3]{4-x^2}}{x}\right)$ **77.** $x = e^4 - 1 \approx 53.598$

79. (a) $f^{-1}(x) = e^{2x}$

(b) ²/_{f-1}

(c) Answers will vary.

81. y 6 + 4 + 4 + 2 + 2 + 4 + x -2 + 4 + x

P.S. Problem Solving (page 59)

1. (a) Center: (3, 4); Radius: 5

(b) $y = -\frac{3}{4}x$ (c) $y = \frac{3}{4}x - \frac{9}{2}$ (d) $(3, -\frac{9}{4})$

(b) $y = -\frac{4}{4}x$ (c) $y = -\frac{4}{4}x$

5. (a) A(x) = x[(100 - x)/2]; Domain: (0, 100)

(b) 16

Dimensions 50 m \times 25 m yield maximum area of 1250 m².

- (c) $50 \text{ m} \times 25 \text{ m}$; Area = 1250 m^2
- 7. $T(x) = \left[2\sqrt{4+x^2} + \sqrt{(3-x)^2+1}\right]/4$
- **9.** (a) 5, less (b) 3, greater (c) 4.1, less
 - (d) 4 + h (e) 4; Answers will vary.
- 11. (a) Domain: $(-\infty, 1) \cup (1, \infty)$; Range: $(-\infty, 0) \cup (0, \infty)$
 - (b) $f(f(x)) = \frac{x-1}{x}$; Domain: $(-\infty, 0) \cup (0, 1) \cup (1, \infty)$
 - (c) f(f(f(x))) = x; Domain: $(-\infty, 0) \cup (0, 1) \cup (1, \infty)$

(d)

The graph is not a line because there are holes at x = 0 and x = 1.

- **13.** (a) $x \approx 1.2426, -7.2426$
- 15. Proof
- (b) $(x + 3)^2 + y^2 = 18$

Chapter 2

Section 2.1 (page 67)

- 1. Precalculus: 300 ft
- **3.** Calculus: Slope of the tangent line at x = 2 is 0.16.
- **5.** (a) Precalculus: 10 square units
 - (b) Calculus: 5 square units

7. (a)

- (b) $1; \frac{3}{2}; \frac{5}{2}$
- (c) 2; Use points closer to P.
- **9.** Area ≈ 10.417 ; Area ≈ 9.145 ; Use more rectangles.

Section 2.2 (page 75)

1.	x	3.9	3.99	3.999	4
	f(x)	0.2041	0.2004	0.2000	?
	х	4.001	4.01	4.1	
	f(x)	0.2000	0.1996	0.1961	

$$\lim_{x \to 4} \frac{x - 4}{x^2 - 3x - 4} \approx 0.2000 \text{ (Actual limit is } \frac{1}{5}.)$$

3.	х	-0.1	-0.01	-0.001	0
	f(x)	0.9983	0.99998	1.0000	?
	x	0.001	0.01	0.1	
	f(x)	1.0000	0.99998	0.9983	

$$\lim_{x \to 0} \frac{\sin x}{x} \approx 1.0000 \text{ (Actual limit is 1.)}$$

5.	x	-0.1	-0.01	-0.001	0
	f(x)	0.9516	0.9950	0.9995	?
	х	0.001	0.01	0.1	
	f(x)	1.0005	1.0050	1.0517	

$$\lim_{x \to 0} \frac{e^x - 1}{x} \approx 1.0000 \text{ (Actual limit is 1.)}$$

_					
7.	x	0.9	0.99	0.999	1
	f(x)	0.2564	0.2506	0.2501	?
	x	1.001	1.01	1.1	
	f(x)	0.2499	0.2494	0.2439	

$$\lim_{x \to 1} \frac{x - 2}{x^2 + x - 6} \approx 0.2500 \text{ (Actual limit is } \frac{1}{4}.)$$

9.	х	0.9	0.99	0.999	1
	f(x)	0.7340	0.6733	0.6673	?
	x	1.001	1.01	1.1	
	-()				

$$\lim_{x \to 1} \frac{x^4 - 1}{x^6 - 1} \approx 0.6666 \text{ (Actual limit is } \frac{2}{3}.$$

11.	x	-6.1	-6.01	-6.001	-6
	f(x)	-0.1248	-0.1250	-0.1250	?

x	-5.999	-5.99	-5.9
f(x)	-0.1250	-0.1250	-0.1252

$$\lim_{x \to -6} \frac{\sqrt{10 - x} - 4}{x + 6} \approx -0.1250 \text{ (Actual limit is } -\frac{1}{8}.$$

_	- 4

х	-0.1	-0.01	-0.001	0
f(x)	1.9867	1.9999	2.0000	?
х	0.001	0.01	0.1	
f(r)	2 0000	1 0000	1 0867	

$$\lim_{x \to 0} \frac{\sin 2x}{x} \approx 2.0000 \text{ (Actual limit is 2.)}$$

x	1.9	1.99	1.999	2
f(x)	0.5129	0.5013	0.5001	?

х	2.001	2.01	2.1
f(x)	0.4999	0.4988	0.4879

$$\lim_{x \to 2} \frac{\ln x - \ln 2}{x - 2} \approx 0.5000 \text{ (Actual limit is } \frac{1}{2}.\text{)}$$

- **19.** 2 **17.** 1
- 21. Limit does not exist. The function approaches 1 from the right side of 2, but it approaches -1 from the left side of 2.
- **23.** Limit does not exist. The function oscillates between 1 and -1as x approaches 0.
- **25.** (a) 2
 - (b) Limit does not exist. The function approaches 1 from the right side of 1, but it approaches 3.5 from the left side of 1.
 - (c) Value does not exist. The function is undefined at x = 4.

27.

29.

 $\lim f(x)$ exists for all points on the graph except where c = 4.

- **33.** $\delta = \frac{1}{11} \approx 0.091$ **31.** $\delta = 0.4$
- **35.** L = 8; Let $\delta = 0.01/3 \approx 0.0033$.
- **37.** L = 1; Let $\delta = 0.01/5 = 0.002$.

47. 10

- **39.** 6
- **51.** 4

43. 3 53.

45. 0

49. 2 55.

$$\lim_{x \to 4} f(x) = \frac{1}{6}$$

Domain: $[-5, 4) \cup (4, \infty)$

The graph has a hole at x = 4.

$$\lim_{x \to 0} f(x) =$$

Domain: $[0, 9) \cup (9, \infty)$

The graph has a hole at x = 9.

$$\lim_{x \to 0} f(x) = 6$$

$$\lim_{t \to 3.5} C(t) = 12.36$$

(c)	t	2	2.5	2.9	3
	С	10.78	11.57	11.57	11.57
	t	3.1	3.5	4	
	С	12.36	12.36	12.36	

The limit does not exist because the limits from the right and left are not equal.

- **59.** Answers will vary. Sample answer: As x approaches 8 from either side, f(x) becomes arbitrarily close to 25.
- **61.** (i) The values of *f* approach different numbers as xapproaches c from different sides of c.

(iii) The values of f oscillate between two fixed numbers as x approaches c.

- **63.** (a) $r = \frac{3}{2} \approx 0.9549$ cm
 - (b) $\frac{5.5}{2\pi} \le r \le \frac{6.5}{2\pi}$, or approximately 0.8754 < r < 1.0345
 - (c) $\lim_{r \to 3/\pi} 2\pi r = 6$; $\varepsilon = 0.5$; $\delta \approx 0.0796$
- **65.** -0.001-0.0001-0.000010 2.7196 2.7184 2.7183 f(x)

x	0.00001	0.0001	0.001
f(x)	2.7183	2.7181	2.7169

 $\lim_{x \to 0} f(x) \approx 2.7183$

A46 Answers to Odd-Numbered Exercises

69. False. The existence or nonexistence of f(x) at x = c has no bearing on the existence of the limit of f(x) as $x \rightarrow c$.

$$\delta = 0.001, (1.999, 2.001)$$

- 71. False. See Exercise 19.
- **73.** Yes. As x approaches 0.25 from either side, \sqrt{x} becomes arbitrarily close to 0.5.

75.
$$\lim_{x\to 0} \frac{\sin nx}{x} = n$$
 77–79. Proofs

81. Putnam Problem B1, 1986

Section 2.3 (page 87)

(a)
$$0$$
 (b) -5

- (a) 0 (b) About 0.52 or $\pi/6$

- **5.** 8 **7.** -1 **9.** 0 **11.** 7 **13.** 2 **15.** 1 **17.** $\frac{1}{2}$
- **19.** $\frac{1}{5}$ **21.** 7 **23.** 1 **25.** $\frac{1}{2}$ **27.** 1 **29.** $\frac{1}{2}$ **31.** -1
 - **35.** $\ln 3 + e$ **37.** (a) 4 (b) 64 (c) 64
- **39.** (a) 3 (b) 2 (c) 2 **41.** (a) 10 (b) 5 (c) 6 (d) $\frac{3}{2}$
- **43.** (a) 64 (b) 2 (c) 12 (d) 8
- **45.** $f(x) = \frac{x^2 1}{x + 1}$ and g(x) = x 1 agree except at x = -1. $\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = -2$
- **47.** $f(x) = \frac{x^3 8}{x 2}$ and $g(x) = x^2 + 2x + 4$ agree except at x = 2. $\lim_{x \to 2} f(x) = \lim_{x \to 2} g(x) = 12$
- **49.** $-\frac{\ln 2}{8} \approx -0.0866$

$$f(x) = \frac{(x+4)\ln(x+6)}{x^2 - 16}$$
 and $g(x) = \frac{\ln(x+6)}{x-4}$ agree except

- at x = -4.
- **51.** -1 **53.** 1/8 **55.** 5/6 **57.** 1/6 **59.** $\sqrt{5}/10$

- **61.** -1/9 **63.** 2 **65.** 2x 2 **67.** 1/5

- **73.** 0 **75.** 1
- **77.** 1 **79.** 3/2
 - The graph has a hole at x = 0.

Answers will vary. Sample answer:

х	-0.1	-0.01	-0.001	0
f(x)	0.358	0.354	0.354	?

x	0.001	0.01	0.1
f(x)	0.354	0.353	0.349

$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x} \approx 0.354; \text{ Actual limit is } \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}.$$

The graph has a hole at x = 0. Answers will vary. Sample answer:

х	-0.1	-0.01	-0.001	0
f(x)	-0.263	-0.251	-0.250	?

х	0.001	0.01	0.1
f(x)	-0.250	-0.249	-0.238

$$\lim_{x \to 0} \frac{[1/(2+x)] - (1/2)}{x} \approx -0.250; \text{ Actual limit is } -\frac{1}{4}.$$

85.

The graph has a hole at t = 0.

Answers will vary. Sample answer:

t	-0.1	-0.01	0	0.01	0.1
f(t)	2.96	2.9996	?	2.9996	2.96

 $\lim_{t\to 0} \frac{\sin 3t}{t} \approx 3.0000$; Actual limit is 3.

The graph has a hole at x = 0.

Answers will vary. Sample answer:

х	-0.1	-0.01	-0.001	0
f(x)	-0.1	-0.01	-0.001	?

x	0.001	0.01	0.1
f(x)	0.001	0.01	0.1

 $\lim_{x \to 0} \frac{\sin x^2}{x} = 0$; Actual limit is 0.

Answers will vary. Sample answer:

x	0.5	0.9	0.99	1
f(x)	1.3863	1.0536	1.0050	?

x	1.01	1.1	1.5
f(x)	0.9950	0.9531	0.8109

$$\lim_{x \to 1} \frac{\ln x}{x - 1} \approx 1; \text{ Actual limit is } 1.$$

97.

93.
$$-1/(x+3)^2$$

95. 4

0 (The graph has a hole at x = 0.)

- **101.** (a) f and g agree at all but one point if c is a real number such that f(x) = g(x) for all $x \neq c$.
 - (b) Sample answer: $f(x) = \frac{x^2 1}{x 1}$ and g(x) = x + 1 agree at all points except x = 1
- **103.** If a function f is squeezed between two functions h and g, $h(x) \le f(x) \le g(x)$, and h and g have the same limit L as $x \rightarrow c$, then $\lim f(x)$ exists and equals L.

105.

The magnitudes of f(x) and g(x) are approximately equal when x is close to 0. Therefore, their ratio is approximately 1.

- **109.** -29.4 m/sec**107.** -64 ft/sec (speed = 64 ft/sec)
- **111.** Let f(x) = 1/x and g(x) = -1/x. $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} g(x)$ do not exist. However,

$$\lim_{x \to 0} [f(x) + g(x)] = \lim_{x \to 0} \left[\frac{1}{x} + \left(-\frac{1}{x} \right) \right] = \lim_{x \to 0} 0 = 0$$

and therefore does exist.

113-117. Proofs

113–117. Floois
119. Let
$$f(x) = \begin{cases} 4, & x \ge 0 \\ -4, & x < 0 \end{cases}$$

$$\lim_{x \to 0} |f(x)| = \lim_{x \to 0} 4 = 4$$

$$\lim_{x \to 0} |f(x)| = 0$$
lim $f(x)$ does not exist b

$$\lim_{x \to 0} |f(x)| = \lim_{x \to 0} 4 = 4$$

 $\lim_{x \to \infty} f(x)$ does not exist because for x < 0, f(x) = -4 and for $x \ge 0$, f(x) = 4.

- **121.** False. The limit does not exist because the function approaches 1 from the right side of 0 and approaches -1 from the left side of 0.
- 123. True.
- **125.** False. The limit does not exist because f(x) approaches 3 from the left side of 2 and approaches 0 from the right side of 2.

127. Proof

129. (a) All
$$x \neq 0, \frac{\pi}{2} + n\pi$$

(b)

The domain is not obvious. The hole at x = 0 is not apparent from the graph.

(c)
$$\frac{1}{2}$$
 (d) $\frac{1}{2}$

Section 2.4 (page 99)

- **1.** (a) 3 (b) 3 (c) 3; f(x) is continuous on $(-\infty, \infty)$.
- **3.** (a) 0 (b) 0 (c) 0; Discontinuity at x = 3
- 5. (a) -3 (b) 3 (c) Limit does not exist. Discontinuity at x = 2
- 7. $\frac{1}{16}$ **9.** $\frac{1}{10}$
- 11. Limit does not exist. The function decreases without bound as x approaches -3 from the left.
- **13.** −1 15. $-1/x^2$ **17.** 5/2
- 19. Limit does not exist. The function decreases without bound as x approaches π from the left and increases without bound as x approaches π from the right.
- **21.** 8
- 23. Limit does not exist. The function approaches 5 from the left side of 3 but approaches 6 from the right side of 3.
- 25. Limit does not exist. The function decreases without bound as x approaches 3 from the right.
- **29.** Discontinuities at x = -2 and x = 2**27.** ln 4
- 31. Discontinuities at every integer
- **33.** Continuous on [-7, 7]**35.** Continuous on [-1, 4]
- **37.** Nonremovable discontinuity at x = 0
- **39.** Continuous for all real *x*
- **41.** Nonremovable discontinuities at x = -2 and x = 2
- **43.** Nonremovable discontinuity at x = 1Removable discontinuity at x = 0
- **45.** Continuous for all real *x*
- **47.** Removable discontinuity at x = -2Nonremovable discontinuity at x = 5
- **49.** Nonremovable discontinuity at x = -7
- **51.** Continuous for all real *x*
- **53.** Nonremovable discontinuity at x = 2
- **55.** Continuous for all real *x*
- **57.** Nonremovable discontinuity at x = 0
- **59.** Nonremovable discontinuities at integer multiples of $\pi/2$
- 61. Nonremovable discontinuities at each integer
- **65.** a = -1, b = 1
- **69.** Continuous for all real *x*
- **71.** Nonremovable discontinuities at x = 1 and x = -1

75.

Nonremovable discontinuity at each integer

Nonremovable discontinuity at x = 4

- 77. Continuous on $(-\infty, \infty)$ 79. Continuous on $[0, \infty)$
- **81.** Continuous on the open intervals . . . , (-6, -2), (-2, 2), (2, 6), . . .
- **83.** Continuous on $(-\infty, \infty)$

The graph has a hole at x = 0. The graph appears to be continuous, but the function is not continuous on [-4, 4]. It is not obvious from the graph that the function has a discontinuity at x = 0.

87.-4
-3

The graph has a hole at x = 0. The graph appears to be continuous, but the function is not continuous on [-4, 4]. It is not obvious from the graph that the function has a discontinuity at x = 0.

- **89.** Because f(x) is continuous on the interval [1, 2] and f(1) = 37/12 and f(2) = -8/3, by the Intermediate Value Theorem there exists a real number c in [1, 2] such that f(c) = 0.
- **91.** Because h(x) is continuous on the interval $[0, \pi/2]$, and h(0) = -2 and $h(\pi/2) \approx 0.9119$, by the Intermediate Value Theorem there exists a real number c in $[0, \pi/2]$ such that f(c) = 0.
- **93.** 0.68, 0.6823 **95.** 0.56, 0.5636 **97.** 0.79, 0.7921
- **99.** f(3) = 11 **101.** f(2) = 4
- **103.** (a) The limit does not exist at x = c.
 - (b) The function is not defined at x = c.
 - (c) The limit exists, but it is not equal to the value of the function at x = c.
 - (d) The limit does not exist at x = c.
- **105.** If f and g are continuous for all real x, then so is f + g (Theorem 1.11, part 2). However, f/g might not be continuous if g(x) = 0. For example, let f(x) = x and $g(x) = x^2 1$. Then f and g are continuous for all real x, but f/g is not continuous at $x = \pm 1$.
- **107.** True
- **109.** False. A rational function can be written as P(x)/Q(x), where P and Q are polynomials of degree m and n, respectively. It can have, at most, n discontinuities.
- 111. The functions differ by 1 for non-integer values of x.

113. $C = \begin{cases} 0.40, & 0 < t \le 10 \\ 0.40 + 0.05[t - 9], & t > 10, t \text{ is not an integer.} \\ 0.40 + 0.05(t - 10), & t > 10, t \text{ is an integer.} \end{cases}$ There is a nonremovable discontinuity at each integer greater than or equal to 10.

115–117. Proofs **119.** Answers will vary.

- 121. (a) S
 60
 50
 40
 30
 10
 55 10 15 20 25 30
- (b) There appears to be a limiting speed, and a possible cause is air resistance.
- **123.** $c = (-1 \pm \sqrt{5})/2$
- **125.** Domain: $[-c^2, 0) \cup (0, \infty)$; Let f(0) = 1/(2c).
- **127.** h(x) has a nonremovable discontinuity at every integer except 0.

129. Putnam Problem B2, 1988

Section 2.5 (page 108)

- 1. $\lim_{x \to -2^+} 2 \left| \frac{x}{x^2 4} \right| = \infty$, $\lim_{x \to -2^-} 2 \left| \frac{x}{x^2 4} \right| = \infty$
- 3. $\lim_{x \to -2^+} \tan(\pi x/4) = -\infty$, $\lim_{x \to -2^-} \tan(\pi x/4) = \infty$
- 5. $\lim_{x\to 4^+} \frac{1}{x-4} = \infty$, $\lim_{x\to 4^-} \frac{1}{x-4} = -\infty$
- 7. $\lim_{x \to 4^+} \frac{1}{(x-4)^2} = \infty$, $\lim_{x \to 4^-} \frac{1}{(x-4)^2} = \infty$

x	-2.999	-2.99	-2.9	-2.5
f(x)	-167	-16.7	-1.69	-0.36

- $\lim_{x \to -3^{+}} f(x) = -\infty, \quad \lim_{x \to -3^{-}} f(x) = \infty$

х	-2.999	-2.99	-2.9	-2.5
f(x)	- 1499	-149	-14	-2.3

$$\lim_{x \to -3^{+}} f(x) = -\infty, \lim_{x \to -3^{-}} f(x) = \infty$$

- 13. x = 0 15. $x = \pm 2$ 17. No vertical asymptote
- **19.** x = -2, x = 1 **21.** No vertical asymptote
- **23.** x = 1 **25.** t = -2 **27.** x = 0
- **29.** x = n, n is an integer. **31.** $t = n\pi, n$ is a nonzero integer.
- **33.** Removable discontinuity at x = -1
- **35.** Vertical asymptote at x = -1 **37.** ∞ **39.** ∞
- 41. $-\frac{1}{5}$ 43. $-\infty$ 45. $-\infty$ 47. ∞ 49. $-\infty$
- 51. $-\infty$ 53. ∞

57.

 $\lim_{x \to 1^+} f(x) = \infty$

- **59.** Answers will vary; No
- **61.** Answers will vary. Sample answer: $f(x) = \frac{x-3}{x^2-4x-12}$

63.

65. (a)

)	x	1	0.5	0.2	0.1
	f(x)	0.1585	0.0411	0.0067	0.0017

х	0.01	0.001	0.0001
f(x)	≈ 0	≈ 0	≈ 0

$$\lim_{x \to 0^+} \frac{x - \sin x}{x} = 0$$

(b)	х	1	0.5	0.2	0.1
	f(x)	0.1585	0.0823	0.0333	0.0167

x	0.01	0.001	0.0001
f(x)	0.0017	≈ 0	≈ 0

$$\lim_{x \to 0^+} \frac{x - \sin x}{x^2} = 0$$

(c)	х	1	0.5	0.2	0.1
	f(x)	0.1585	0.1646	0.1663	0.1666

x	0.01	0.001	0.0001
f(x)	0.1667	0.1667	0.1667

$$\lim_{x \to 0^{+}} \frac{x - \sin x}{x^3} = 0.1667 \ (1/6)$$

(d)	x	1	0.5	0.2	0.1
	f(x)	0.1585	0.3292	0.8317	1.6658

х	0.01	0.001	0.0001
f(x)	16.67	166.7	1667.0

$$\lim_{x \to 0^+} \frac{x - \sin x}{x^4} = \infty$$

For
$$n > 3$$
, $\lim_{x \to 0^+} \frac{x - \sin x}{x^n} = \infty$.

- **67.** (a) $\frac{7}{12}$ ft/sec (b) $\frac{3}{2}$ ft/sec (c) $\lim_{x \to 25^{-}} \frac{2x}{\sqrt{625 x^2}} = \infty$
- **69.** (a) $A = 50 \tan \theta 50\theta$; Domain: $(0, \pi/2)$

(b)	θ	0.3	0.6	0.9	1.2	1.5
	$f(\theta)$	0.47	4.21	18.0	68.6	630.1

- (c) $\lim_{\theta \to \pi/2} A = \infty$
- **71.** False. Let $f(x) = (x^2 1)/(x 1)$.
- **73.** False. Let $f(x) = \tan x$.
- **75.** Let $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{x^4}$, and let c = 0. $\lim_{x \to 0} \frac{1}{x^2} = \infty$ and $\lim_{x \to 0} \frac{1}{x^4} = \infty$, but $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{1}{x^4}\right) = \lim_{x \to 0} \left(\frac{x^2 1}{x^4}\right) = -\infty \neq 0$.
- 77. Given $\lim_{x\to c} f(x) = \infty$, let g(x) = 1. Then $\lim_{x\to c} \frac{g(x)}{f(x)} = 0$ by Theorem 2.15.
- 79. Answers will vary.

Review Exercises for Chapter 2 (page 111)

1. Calculus

Estimate: 8.3

_					
3.	x	2.9	2.99	2.999	3
	f(x)	-0.9091	-0.9901	-0.9990	?

х	3.001	3.01	3.1
f(x)	-1.0010	-1.0101	-1.1111

$$\lim_{x \to 0} \frac{x - 3}{x^2 - 7x + 12} \approx -1.0000$$

- **5.** (a) 4 (b) 5
- 7. 5; F
- **9.** -3; Proof
- **11.** 36

The graph has a hole at x = 0.

x	-0.1	-0.01	-0.001	0
f(x)	0.3352	0.3335	0.3334	?

x	0.001	0.01	0.1	
f(x)	0.3333	0.3331	0.3315	

$$\lim_{x \to 0} \frac{\sqrt{2x+9} - 3}{x} \approx 0.3333$$
; Actual limit is $\frac{1}{3}$.

x	-0.1	-0.01	-0.001	0
f(x)	0.8867	0.0988	0.0100	?

x	0.001	0.01	0.1	
f(x)	-0.0100	-0.1013	-1.1394	

 $\lim_{x \to 0} f(x) = 0$; Actual limit is 0.

- **39.** $\frac{1}{6}$ 37. -39.2 m/sec**41.** $\frac{1}{4}$ **43.** 3
- **47.** Limit does not exist. The limit as t approaches 1 from the left is 2, whereas the limit as t approaches 1 from the right is 1.
- **49.** Continuous for all real x
- **51.** Nonremovable discontinuity at x = 5
- **53.** Nonremovable discontinuities at x = -1 and x = 1Removable discontinuity at x = 0
- **55.** $c = -\frac{1}{2}$ **57.** Continuous for all real *x*
- **59.** Continuous on $[4, \infty)$
- **61.** Continuous on (k, k + 1) for all integers k
- **63.** Removable discontinuity at x = 1Continuous on $(-\infty, 1) \cup (1, \infty)$
- **65.** Proof **67.** (a) -4 (b) 4 (c) Limit does not exist.
- **69.** x = 0**71.** $x = \pm 3$ **73.** $x = \pm 8$
- 79. $\frac{1}{3}$ 81. $-\infty$ **75.** $x = \pm 5$ **77.** $-\infty$
- 83. $\frac{4}{5}$ 85. ∞ 87. $-\infty$
- **89.** (a) \$14,117.65 (b) \$80,000.00 (c) \$720,000.00
 - (d) ∞; No matter how much the company spends, the company will never be able to remove 100% of the pollutants.

P.S. Problem Solving (page 113)

1. (a) Perimeter $\triangle PAO = 1 + \sqrt{(x^2 - 1)^2 + x^2} + \sqrt{x^4 + x^2}$ Perimeter $\triangle PBO = 1 + \sqrt{x^4 + (x - 1)^2} + \sqrt{x^4 + x^2}$

(b)	x	4	2	1
	Perimeter $\triangle PAO$	33.0166	9.0777	3.4142
	Perimeter $\triangle PBO$	33.7712	9.5952	3.4142
	r(x)	0.9777	0.9461	1.0000

x	0.1	0.01
Perimeter $\triangle PAO$	2.0955	2.0100
Perimeter $\triangle PBO$	2.0006	2.0000
r(x)	1.0475	1.0050

- **3.** (a) Area (hexagon) = $(3\sqrt{3})/2 \approx 2.5981$ Area (circle) = $\pi \approx 3.1416$ Area (circle) – Area (hexagon) ≈ 0.5435
 - (b) $A_n = (n/2) \sin(2\pi/n)$

(c)	n	6	12	24	48	96
	A_n	2.5981	3.0000	3.1058	3.1326	3.1394

3.1416 or π

5. (a)
$$m = -\frac{12}{5}$$
 (b) $y = \frac{5}{12}x - \frac{169}{12}$
(c) $m_x = \frac{-\sqrt{169 - x^2 + 12}}{x - 5}$

(c)
$$m_x = \frac{-\sqrt{169 - x^2 + 1}}{x - 5}$$

- (d) $\frac{5}{12}$; It is the same as the slope of the tangent line found in (b).
- **7.** (a) Domain: $[-27, 1) \cup (1, \infty)$

(c) $\frac{1}{14}$ (d) $\frac{1}{12}$

The graph jumps at every integer.

The graph has a hole at x = 1.

- **9.** (a) g_1, g_4 (b) g_1 (c) g_1, g_3, g_4
- 11.

 - (a) f(1) = 0, f(0) = 0, $f(\frac{1}{2}) = -1$, f(-2.7) = -1
 - (b) $\lim_{x \to 1^{-}} f(x) = -1$, $\lim_{x \to 1^{+}} f(x) = -1$, $\lim_{x \to 1/2} f(x) = -1$
 - (c) There is a discontinuity at each integer.
- **13.** (a) (b) (i) $\lim_{x \to a^+} P_{a,b}(x) = 1$ (ii) $\lim_{x \to a^{-}} P_{a,b}(x) = 0$ (iii) $\lim_{x \to b^+} P_{a,b}(x) = 0$ (iv) $\lim_{x \to b^{-}} P_{a,b}(x) = 1$
 - (c) Continuous for all positive real numbers except a and b
 - (d) The area under the graph of U and above the x-axis is 1.